题意:
给出一个01矩阵,求选择多少行或列,能将矩阵中的1全部覆盖;
矩阵大小为n*n,有m个1存在;
n<=500,m<=10000;
题解:
对于矩阵中的每一个1来说,选择行还是选择列都可以,并且只需要选择一个就可以了;
如果我们把每个行和每个列抽象成一个点,就可以得到2n个点 (废话;
对于每一个1的坐标(x , y),将x与y连一条边,用这条边来表示这个点;
显然行与行,列与列之间不会连边,那么这就是一个二分图;
选择行或列的问题就转化成了选点;
对每一条边,当两个端点有一个是被选择的时,它就满足题中的条件;
于是问题就转化成了在一个二分图中求最少点使边全部被覆盖的问题;
而二分图点的最小覆盖又等价于求其最大匹配;
所以这就是匈牙利算法求最大匹配的模板题咯;
PS:
关于最小覆盖=最大匹配的证明,推荐去matrix67的博客看看;
链接: http://www.matrix67.com/blog/archives/116
代码:
#include<vector>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 501
using namespace std;
vector<int>to[N];
int mat[N];
bool vis[N];
bool dfs(int x)
{
int i,y;
for(i=0;i<to[x].size();i++)
{
if(vis[y=to[x][i]]==0)
{
vis[y]=1;
if(mat[y]==0||dfs(mat[y]))
{
mat[y]=x;
return 1;
}
}
}
return 0;
}
int main()
{
int n,m,i,j,k,x,y;
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
to[x].push_back(y);
}
for(i=1,k=0;i<=n;i++)
{
memset(vis,0,sizeof(vis));
if(dfs(i))
k++;
}
printf("%d",k);
return 0;
}