题意:
给出一颗树,求所有点离树上点的最大距离;
n<=10000;
题解:
因为一棵树是没有环的,所以对于某个点:
其答案可能在其子树中的最长路,或者在将此树倒置后,父结点的子树的最长路;
这两者是不会有交叉的;
所以维护子树到当前结点的最长路ma[x],和向上到父节点找到的最长路fa[x];
ma的维护好说,而fa的维护中,设父结点为x,子结点为y,x->y 的边权为val;
fa[y]= max( ma[x]+val , fa[x]+val)
但是倘若恰好y是ma[x]这条路上的一点,是不能满足此式的;
因此再维护次大值,当这种情况时就用次大值更新即可;
需要两遍dfs,时间复杂度O(n);
代码:
#include<vector>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 10001
using namespace std;
vector<int>to[N],val[N];
int ma1[N],ma2[N],fa[N];
void init(int n)
{
for(int i=1;i<=n;i++)
to[i].clear(),val[i].clear();
memset(ma1,0,sizeof(ma1));
memset(ma2,0,sizeof(ma2));
memset(fa,0,sizeof(fa));
}
void dfs1(int x,int pre)
{
int i,y;
for(i=0;i<to[x].size();i++)
{
if((y=to[x][i])!=pre)
{
dfs1(y,x);
if(ma1[x]<ma1[y]+val[x][i])
ma2[x]=ma1[x],ma1[x]=ma1[y]+val[x][i];
else if(ma2[x]<ma1[y]+val[x][i])
ma2[x]=ma1[y]+val[x][i];
}
}
}
void dfs2(int x,int pre)
{
int i,y;
for(i=0;i<to[x].size();i++)
{
if((y=to[x][i])!=pre)
{
if(ma2[x]>=ma1[y]+val[x][i])//判断是否为最大只需与次大比较(因为可能出现最大等于次大)
fa[y]=max(fa[x],ma1[x])+val[x][i];
else
fa[y]=max(fa[x],ma2[x])+val[x][i];
dfs2(y,x);
}
}
}
int main()
{
int n,m,i,j,k,x,y,v;
while(scanf("%d",&n)!=EOF)
{
init(n);
for(i=2;i<=n;i++)
{
scanf("%d%d",&y,&v);
to[i].push_back(y);
val[i].push_back(v);
to[y].push_back(i);
val[y].push_back(v);
}
dfs1(1,0);
dfs2(1,0);
for(i=1;i<=n;i++)
{
printf("%d\n",max(ma1[i],fa[i]));
}
}
return 0;
}