hdu-2196 Computer

31 篇文章 0 订阅
12 篇文章 0 订阅

题意:

给出一颗树,求所有点离树上点的最大距离;

n<=10000;


题解:

因为一棵树是没有环的,所以对于某个点:
其答案可能在其子树中的最长路,或者在将此树倒置后,父结点的子树的最长路;

这两者是不会有交叉的;

所以维护子树到当前结点的最长路ma[x],和向上到父节点找到的最长路fa[x];

ma的维护好说,而fa的维护中,设父结点为x,子结点为y,x->y 的边权为val;

fa[y]= max( ma[x]+val , fa[x]+val)

但是倘若恰好y是ma[x]这条路上的一点,是不能满足此式的;

因此再维护次大值,当这种情况时就用次大值更新即可;


需要两遍dfs,时间复杂度O(n);



代码:


#include<vector>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 10001
using namespace std;
vector<int>to[N],val[N];
int ma1[N],ma2[N],fa[N];
void init(int n)
{
    for(int i=1;i<=n;i++)
        to[i].clear(),val[i].clear();
    memset(ma1,0,sizeof(ma1));
    memset(ma2,0,sizeof(ma2));
    memset(fa,0,sizeof(fa));
}
void dfs1(int x,int pre)
{
    int i,y;
    for(i=0;i<to[x].size();i++)
    {
        if((y=to[x][i])!=pre)
        {
            dfs1(y,x);
            if(ma1[x]<ma1[y]+val[x][i])
                ma2[x]=ma1[x],ma1[x]=ma1[y]+val[x][i];
            else if(ma2[x]<ma1[y]+val[x][i])
                ma2[x]=ma1[y]+val[x][i];
        }
    }
}
void dfs2(int x,int pre)
{
    int i,y;
    for(i=0;i<to[x].size();i++)
    {
        if((y=to[x][i])!=pre)
        {
            if(ma2[x]>=ma1[y]+val[x][i])//判断是否为最大只需与次大比较(因为可能出现最大等于次大)
            fa[y]=max(fa[x],ma1[x])+val[x][i];
            else
            fa[y]=max(fa[x],ma2[x])+val[x][i];
            dfs2(y,x);
        }
    }
}
int main()
{
    int n,m,i,j,k,x,y,v;
    while(scanf("%d",&n)!=EOF)
    {
        init(n);
        for(i=2;i<=n;i++)
        {
            scanf("%d%d",&y,&v);
            to[i].push_back(y);
            val[i].push_back(v);
            to[y].push_back(i);
            val[y].push_back(v);
        }
        dfs1(1,0);
        dfs2(1,0);
        for(i=1;i<=n;i++)
        {
            printf("%d\n",max(ma1[i],fa[i]));
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值