多项式逼近方法全解析:从理论到实践
1. 最佳多项式逼近概述
在许多实际问题中,我们常常需要用多项式来逼近一个给定的函数。对于一个函数 (f),在特定的范数 (|.| X) 下,我们希望找到一个多项式 (p_n \in P_n),使得 (|f - p_n|_X) 达到最小,即 (|f - p_n|_X = \inf {q \in P_n} |f - q| X),这样的 (p_n) 被称为 (f) 在 (P_n) 中的最佳多项式逼近,而 (\inf {q \in P_n} |f - q| X) 则被称为最佳逼近误差。我们主要考虑两种空间 (X):
- 连续函数空间 (C(I))(均匀范数) :当 (I = [a, b]) 时,(X = C(I)) 是连续函数的空间,配备均匀范数 (|.| {\infty}),最佳均匀逼近误差记为 (E_n(f) = \inf_{q \in P_n} |f - q| {\infty})。
- 可测函数空间 (L^2(I))(希尔伯特范数) :当 (I = ]a, b[) 时,(X = L^2(I)) 是可测函数的空间,满足 (\int_a^b |f(x)|^2 dx) 有限,配备内积 (\langle f, g \rangle = \int {-1}^1 f(t)g(t) dt) 和范数 (|f| = \sqrt{\langle f, f \rangle})。
2. 最佳均匀逼近
在区间 (I = [a, b]) 上,对于连续函数 (f \in C(I)),我们要找
超级会员免费看
订阅专栏 解锁全文
1090

被折叠的 条评论
为什么被折叠?



