记录自己调试SSD过程(第一次写,如有不对,请各位指正)

本文档详细记录了使用SSD模型进行目标检测时的训练和验证过程,包括从下载源码到解决各种遇到的问题,如数据集路径设置、文件不存在错误、CUDA内存不足、损失函数异常、 autograd函数更新等。通过这些步骤,成功运行了train.py并进行了模型验证。
摘要由CSDN通过智能技术生成

从github中下载源码(https://github.com/amdegroot/ssd.pytorch),按照readme文件中的步鄹进行安装,运行。

训练

1.下载数据集VOC2007(训练,测试),VOC2012(训练),可以自己创建新的文件夹,也可以在源代码的data文件下创建小的文件夹。预训练文件(vgg16_reducedfc.pth),放置在weights文件中。

2.数据集加载路径更改:voc0712.py文件中VOC_ROOT = osp.join(HOME, "更改为自己数据集所在的路径")

使用下载的vgg16模型,需将train.py文件中更改为parser.add_argument('--basenet', default='vgg16_reducedfc.pth',help='Pretrained base model')

3.将train.py文件中第175行的images, targets = next(batch_iterator)更改为

try:
    images,targets=next(batch_iterator)
except StopIteration:
    batch_iterator=iter(data_loader)
    images,targets=next(batch_iterator)

这样就解决的自动跳出迭代的问题

4.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值