Retinanet网络结构简介

该博客详细介绍了ResNet50网络结构,包括C1-C5层的构建,每个阶段的Block组成及功能。接着讨论了FPN模块在特征金字塔网络中的应用。此外,还阐述了分类和回归检测子网络的设计,它们通过多层特征融合进行目标检测。最后,提到了训练过程中BN层的冻结策略,以稳定网络训练。
摘要由CSDN通过智能技术生成

一、网络主干框架(resnet50, FPN, class子网络,reg子网络)

1.首先设置C1-C5层

C1

conv7x7,s=2,p=1

BN

relu

maxpool3x3,s=2,p=1

C2(3)

Block[1-3]:

conv1x1,BN,relu

conv3x3,s=1,,p=1,BN,relu

conv1x1,bn

add,relu

C3(4)

Block[1]:

conv1x1,BN,relu,

conv3x3,s=2,p=1,BN,relu

conv1x1,BN

x下采样:conv1x1,s=2,BN

add,relu

Block[2-4]:

conv1x1,BN,relu

conv3x3,s=2,p=1,BN,relu

conv1x1,BN

add,relu

C4(6)

Block[1]:

conv1x1,BN,relu,

conv3x3,s=2,p=1,BN,relu

conv1x1,BN

x下采样:conv1x1,s=2,BN

add,relu

Block[2-6]:

conv1x1,BN,relu

conv3x3,s=2,p=1,BN,relu

conv1x1,BN

add,relu

C5(3)

Block[1]:

conv1x1,BN,relu,

conv3x3,s=2,p=1,BN,relu

conv1x1,BN

x下采样:conv1x1,s=2,BN

add,relu

Block[2-3]:

conv1x1,BN,relu

conv3x3,s=2,p=1,BN,relu

conv1x1,BN

add,relu

但是train.py文件中有这一行代码:retinanet.module.freeze_bn()

个人理解是将网络结构中的BN层冻结。

2.FPN模块

 

3.class检测子网络

conv3x3,p=1,relu
conv3x3,p=1,relu
conv3x3,p=1,relu
conv3x3,p=1,relu
conv3x3,p=1,sigmoid

 

4.reg检测子网络

conv3x3,p=1,relu
conv3x3,p=1,relu
conv3x3,p=1,relu
conv3x3,p=1,relu
conv3x3,p=1

class与reg一开始是对每层特征图继续计算。最终的classification与regssion是将每层的class与reg进行torch.cat得到的。

以上内容纯属个人理解与记录。如有不对,可以指出,共同进步,谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值