大模型
文章平均质量分 91
大模型指的是具有大量参数和更高复杂度的机器学习模型。这些模型通常需要更多的计算资源来训练和推断,并且可以更好地捕捉数据中的复杂关系。
东境物语
欢迎访问!!!
展开
-
如何看待诺贝尔物理学奖颁给了机器学习与神经网络?
在创建物理模型方面,机器学习可以通过学习和训练大量的数据,建立物理系统的模型,从而实现对物理过程的模拟和预测。而辛顿发明的玻尔兹曼机,也用到了很多统计物理学的工具,能够通过学习数据中的概率分布来进行推理和决策,对于理解复杂系统中的模式识别具有重要意义。例如,谷歌旗下的 DeepMind 曾发布多个针对基础科学研究的深度学习模型,包括专门设计用于从第一性原理计算原子和分子的能量的 FermiNet,以及用于 “电子密度映射到化学相互作用能量” 这一量子化学模拟中关键组成部分的 DM21 等等。原创 2024-10-10 21:41:14 · 1703 阅读 · 10 评论 -
人工智能时代,程序员如何保持核心竞争力?
例如,从传统的编程语言到新兴的人工智能相关语言和框架,如 Python 在机器学习领域的广泛应用,以及 TensorFlow、PyTorch 等深度学习框架的不断更新,都要求程序员不断跟进学习。例如,程序员与生物医学专家合作开发医疗人工智能应用,与教育专家合作开发智能教育软件,通过跨领域的合作,程序员可以拓宽自己的视野,提升自己的综合能力,创造出更有价值的产品和服务。只有不断提升自我,把握机遇,积极创新,关注伦理和社会影响,才能在科技浪潮中发挥更大的作用,实现自己的职业发展和人生价值。原创 2024-10-09 21:19:53 · 2683 阅读 · 8 评论 -
多云架构下大模型训练的存储稳定性探索
多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平台可能无法满足资源需求,而多云架构可以轻松实现资源的横向扩展。原创 2024-09-07 08:35:35 · 1529 阅读 · 1 评论 -
电商搜索革命:大模型引领购物新体验
例如,当商家推出一款新的手机时,大模型可以根据手机的特点和用户的需求,生成吸引人的营销文案,如“这款手机拥有强大的性能和出色的拍照效果,是你生活和工作的好帮手”。例如,当用户搜索“运动鞋”时,大模型可以根据用户的搜索历史和购买记录,判断用户的喜好和需求,为用户推荐适合的运动鞋品牌和款式。通过大模型做商品增强召回,可以提高商品的召回率和准确性。例如,当用户搜索“手机”时,大模型可以根据用户的需求和商品的特征,召回与用户需求最相关的手机品牌和型号,并对商品的相关性进行评估,为用户提供更加准确的商品推荐。原创 2024-09-07 06:45:00 · 1565 阅读 · 0 评论 -
AI 与大模型:物流行业的变革力量
在运输和仓储环节,效率的提升和准确性的提高,确保了货物能够及时、准确地送达客户手中,提高了客户对物流服务的信任度和满意度。资源成本方面,车辆管理中 AI 与大模型对车辆运行状态的实时监测,预测车辆可能出现的故障,并提前安排维修保养,降低了车辆故障率,减少了维修资源的浪费。像快递 100 的客服与工单中台团队利用百度文心大模型对客户留言内容进行智能分析与归类,目前快递 100 的大模型客服解决了高达 90% 的工单问题,仅 10% 的案例需人工干预,客诉一次性解决率高达 99.4%。原创 2024-09-08 07:00:00 · 1776 阅读 · 26 评论 -
企业大模型落地的“最后一公里”攻略
大模型在多个行业展现出强大的应用潜力。在金融行业,沉淀了大量高质量数据,各金融平台用户数以亿计,交易数据浩如烟海。利用大模型分析处理这些数据,金融机构可以预测用户行为偏好,更高效、准确评估客户风险,实时监测交易和市场波动,及时制定策略。IDC 调研显示,超半数的金融机构计划在 2023 年投资生成式人工智能技术。原创 2024-09-08 06:45:00 · 1398 阅读 · 0 评论 -
AI 大模型落地金融:破局之道与应对之策
在金融领域,“小模型 + 大模型” 的应用模式正逐渐展现出其独特的优势。通过将小模型的精准性与大模型的通用性相结合,能够有效降低传统自然语言处理的封装门槛。过去,银行在处理自然语言任务时需要进行复杂的下游任务封装,而现在只需使用提示词即可驱动大模型。此外,大模型强大的知识学习能力能够帮助金融机构更好地理解和应用知识。原创 2024-09-03 07:30:00 · 1276 阅读 · 1 评论 -
推荐大模型面临的严峻挑战
随着模型规模的增大和应用场景的拓展,对计算资源的需求不断增加。例如,在金融领域,为了实现精准的风险评估和投资预测,需要对大模型进行反复训练和调整,这不仅需要强大的计算能力,还需要专业团队的长期投入。此外,不同类型的大模型,如基于 Transformer 架构的和基于其他架构的模型,其特点和对量化的需求也各不相同,但目前缺乏针对不同类型模型的定制化量化技术方案。对于一些语言背后的深层含义、细微的语义差别以及复杂的语境关联,大模型往往难以准确把握,需要进一步提升其在这方面的能力,以实现更精准和全面的语言理解。原创 2024-09-03 07:00:00 · 1544 阅读 · 0 评论 -
大模型赋能风控运营:效率跃升的密码
随着金融行业的迅速发展和数据量的爆炸式增长,传统的风控运营手段逐渐难以满足复杂多变的风险形势。大数据、人工智能等技术的不断进步,为大模型在风控运营领域的应用提供了技术支撑。金融机构面临着日益多样化的风险类型,如信用风险、市场风险、操作风险等,对风险识别和管理的精度、速度提出了更高要求。原创 2024-08-31 07:30:00 · 4169 阅读 · 17 评论 -
大模型技术如何重塑物流供应链
在物流供应链领域,大模型技术正逐渐崭露头角,并在各个环节实现了初步渗透。在需求预测环节,大模型凭借其强大的数据处理和分析能力,能够整合多种复杂的数据源,如历史销售数据、市场趋势、社交媒体动态、政策变化等,从而为企业提供更为精准的需求预测。据相关数据显示,采用大模型进行需求预测的企业,其预测准确率相较传统方法提升了约 20%。原创 2024-08-31 07:00:00 · 4521 阅读 · 10 评论 -
AI模型:追求全能还是专精?
自 1950 年计算机专家约翰・麦卡锡提出 “人工智能” 概念以来,AI 模型的发展经历了漫长而显著的历程。在早期,AI 模型以符号主义和连接主义为主要理论基础。符号主义 AI 致力于让系统能够理解、推理和解决问题,通过基于规则的系统如专家系统和知识工程进行运作。连接主义 AI 则以神经网络为核心,旨在通过大量数据训练来解决复杂问题,代表性工作包括反向传播算法和支持向量机。进入 21 世纪初,深度学习技术的崛起使大模型的训练成为可能。原创 2024-08-30 07:15:00 · 2229 阅读 · 0 评论 -
揭秘大模型:AI时代的智慧引擎
大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型与小模型在多个方面存在显著区别。参数规模上,大模型拥有数十亿甚至数千亿的参数,例如 GPT-3 模型参数规模达到 1750 亿,而小模型的参数数量通常较少,可能只有数百万甚至更少。在表达能力方面,大模型因其庞大的参数和复杂的结构,能够处理更加复杂的数据模式和关系,具有更强的表达能力。小模型则相对较弱,难以处理复杂的数据。原创 2024-08-29 07:30:00 · 3112 阅读 · 0 评论 -
本地搭建 Whisper 语音识别模型全攻略
Whisper 语音识别模型是由 OpenAI 开发的一款强大工具。它具有开源的特性,这意味着开发者可以自由获取和使用其相关代码进行研究和应用开发。Whisper 最为显著的特点之一是其出色的多语言处理能力,能够识别和处理多种语言的语音信息。它通过从网络上收集大量的多语言和多任务监督数据进行训练,从而能够应对各种口音、背景噪音和技术术语,在不同语言环境下都能展现出较高的识别准确性和鲁棒性。无论是常见的主流语言,还是一些较为小众的语言,Whisper 都能够进行有效的语音识别。原创 2024-08-29 07:00:00 · 2073 阅读 · 0 评论 -
SQL AI 工具:颠覆数据库管理与分析的创新力量
随着大数据时代的到来,企业在数据处理和分析方面面临着前所未有的挑战。传统的SQL查询虽然强大,但在面对海量数据和复杂的业务逻辑时,往往显得力不从心。SQL AI工具的出现,为数据处理和分析带来了新的希望。本文将介绍SQL AI工具的定义、优势、应用场景及其未来发展趋势。原创 2024-08-26 20:50:54 · 2288 阅读 · 0 评论 -
AIGC 大模型:实践与未来
AIGC(AI Generated Content)大模型是一种基于大规模数据训练的人工智能模型,具备强大的内容生成能力和多模态交互能力。它能够理解和处理多种类型的信息,包括文本、图像、音频等,并能根据输入的提示或需求生成高质量的相应内容。在多模态交互方面,AIGC 大模型可以实现不同模态信息之间的转换和融合,为用户提供更加丰富和个性化的体验。原创 2024-08-26 20:35:00 · 2356 阅读 · 0 评论 -
OpenAI Sora:视频生成领域的创新力量
此外,与生物识别技术、区块链技术等的结合,也将为 Sora 的应用带来更多创新和突破,为人类的生活和工作带来更大的便利和价值。例如,它可以根据用户的需求,生成从水下的纽约市到太空冒险的各种独特场景,无论是细腻的情感表达还是宏大的科幻场景,都能精准呈现,为用户提供丰富多样的视觉体验。它利用 Dall-E 模型的重述要点技术生成视觉训练数据的描述性字幕,提高了文本的准确性,还通过 GPT 技术将简短的用户提示转换为更详细的转译,从而能够精确地按照用户提示生成高质量的视频,大大提升了视频的整体质量。原创 2024-08-24 10:00:00 · 1979 阅读 · 0 评论 -
精通 Stable Diffusion 调优秘籍
为了加强文本对生成内容的控制,引入了 classifier free guidance 机制,生成有文本控制和没有文本控制的两种噪声,通过计算它们的差异并乘以一定系数来增强文本引导的效果,最终得到更加符合文本描述的生成图像。为了实现更流畅的运行,需要根据实际需求选择合适的硬件,并进行合理的资源分配。U-Net 工作机制的关键在于其跳跃连接(Skip Connections),它将编码器中的特征图与解码器中对应层的特征图直接连接起来,有效地传递了低层次的空间信息和细节,使得生成的图像更加准确和清晰。原创 2024-08-23 20:45:00 · 1916 阅读 · 1 评论 -
Stable Diffusion 与 DALL·E3 的深度解析
然而,如果更注重便捷性和快速出图,对生成效果的要求不是特别苛刻,同时不太愿意处理复杂的硬件和软件设置,DALL・E3 则可能更适合。对于商业用户而言,如果项目对图像质量、细节和创意的要求极高,同时有足够的技术和硬件支持,Stable Diffusion 可以提供更多的可能性和定制化选项,有助于打造独特的商业作品。但如果项目需要快速生成图像,对版权要求不高,且对图像效果的精细度要求不是顶级水平,DALL・E3 的付费模式和相对简单的操作可能更符合商业快速运作的需求。原创 2024-08-23 20:30:00 · 2705 阅读 · 0 评论 -
5 分钟 Stable Diffusion 本地安装指南
Stable Diffusion 是一款非常强大的基于深度学习的 AI 图像生成技术。它由众多研究团队和开发者共同努力而成,其中包括德国慕尼黑大学和总部位于纽约的 RunwayML 公司的国际研究团队。Stable Diffusion 的工作原理基于扩散模型。简单来说,它通过在潜在空间中对图像进行处理来生成新的图像。首先,将输入的文本信息转化为数字表示,然后经过一系列的计算和处理步骤,逐步生成与文本描述相匹配的图像。在应用领域方面,Stable Diffusion 展现出了广泛的用途。原创 2024-08-22 20:47:24 · 2310 阅读 · 1 评论 -
解锁创意之门:如何使用DALL·E-3创作惊艳的图像
DALL·E-3是OpenAI开发的最新一代图像生成模型,它能够根据文本描述生成高度逼真的图像。与前代相比,DALL·E-3在图像质量、细节处理和生成速度方面都有显著提升。无论你是设计师、艺术家还是内容创作者,DALL·E-3都能帮助你将脑海中的创意变为现实。DALL·E-3为我们提供了一种全新的创作方式,让每个人都能轻松生成高质量的图像。通过掌握使用技巧和不断尝试,你一定能创作出令人惊艳的作品。快来试试吧,让你的创意在DALL·E-3的帮助下焕发光彩!原创 2024-08-09 18:42:34 · 1722 阅读 · 0 评论 -
DALL•E 3 重新定义图像生成的人工智能
在人工智能的不断发展中,图像生成技术一直是一个备受关注的领域。OpenAI 的 DALL-E 系列自发布以来,便因其卓越的图像生成能力而备受瞩目。作为这一系列的最新成员,DALL-E 3 再次突破了技术的界限,为图像生成带来了全新的可能性。本文将详细探讨 DALL-E 3 的技术创新、应用场景以及对未来图像生成的影响。原创 2024-08-09 18:13:06 · 2079 阅读 · 0 评论 -
AI编程工具:引领未来的软件开发革命
AI编程工具已经在多个方面展现出其独特的优势,极大地提高了开发效率和代码质量。尽管它们仍然面临一些挑战,但随着AI技术的不断进步,这些工具将在未来几年内迎来更大的发展。开发者应该积极探索和利用这些工具,以提高自身的开发效率和竞争力。在不久的将来,AI编程工具将成为每个开发者必备的利器,推动软件开发领域迈向新的高度。以上就是对AI编程工具的全面探讨,希望能够为广大开发者提供有价值的参考和启示。无论你是新手还是资深开发者,AI编程工具都将成为你不可或缺的助手,帮助你在激烈的竞争中脱颖而出。原创 2024-08-09 12:27:17 · 1856 阅读 · 0 评论 -
全面的LLM大模型技术知识图谱
迭代工具:评测、标注、持续监控。数据工程、训练数据 batch 选择、训练策略、前向网络计算损失、后向传播计算梯度、分布式并行、数据并行、模型并行、张量并行、流水线并行、3D 并行、accelerate 加速、混合精度、梯度累积通信加速、RLHF、RLAIF、奖励模型、PPO 强化学习模型等。LLMOps 技术:成本估算、模型量化、模型蒸馏、计算图优化、模型编译、硬件优化、效果评估、并行计算、显存优化(ZeRO、ZeRO-Offload、activation checkpoint)、参数高效微调等。转载 2024-06-03 21:06:03 · 310 阅读 · 0 评论 -
什么是大模型?一文读懂大模型的基本概念
引申到模型层面,涌现能力指的是当模型的训练数据突破一定规模,模型突然涌现出之前小模型所没有的、意料之外的、能够综合分析和解决更深层次问题的复杂能力和特性,展现出类似人类的思维和智能。在探索期,以 Transformer 为代表的全新神经网络架构,奠定了大模型的算法架构基础,使大模型技术的性能得到了显著提升。而当模型的训练数据和参数不断扩大,直到达到一定的临界规模后,其表现出了一些未能预测的、更复杂的能力和特性,模型能够从原始训练数据中自动学习并发现新的、更高层次的特征和模式,这种能力被称为“转载 2024-03-14 21:18:07 · 925 阅读 · 0 评论