Alex在2012年提出的alexnet网络结构模型引爆了神经网络的应用热潮,并赢得了2012届图像识别大赛的冠军,使得CNN成为在图像分类上的核心算法模型。
接下来本文对该网络配置结构中各个层进行详细的解读(训练阶段):
注:下述关于卷积核的尺寸来自于Alex在2012年发表的经典论文。
1. conv1阶段DFD(data flow diagram):
第一层输入数据为原始的227*227*3的图像,这个图像被11*11*3的卷积核进行卷积运算,卷积核对原始图像的每次卷积都生成一个新的像素。卷积核沿原始图像的x轴方向和y轴方向两个方向移动,移动的步长是4个像素。因此,卷积核在移动的过程中会生成(227-11)/4+1=55个像素(227个像素减去11,正好是54,即生成54个像素,再加上被减去的11也对应生成一个像素),行和列的55*55个像素形成对原始图像卷积之后的像素层。共有96个卷积核,会生成55*55*96个卷积后的像素层。96个卷积核分成2组,每组48个卷积核。对应生成2组55*55*48的卷积后的像素层数据。这些像素层经过relu1单元的处理,生成激活像素层,尺寸仍为2组55*55*48的像素层数据。
这些像素层经过pool运算(池化运算)的处理,池化运算的尺度为3*3,运算的步长为2,则池化后图像的尺寸为(55-3)/2+1=27。 即池化后像素的规模为27*27*96;然后经过归一化处理,归一化运算的尺度为5*5;第一卷积层运算结束后形成的像素层的规模为27*27*96。分别对应96个卷积核所运算形成。这96层像素层分为2组,每组48个像素层,每组在一个独立的GPU上进行运算。
反向传播时,每个卷积核对应一个偏差值。即第一层的96个卷积核对应上层输入的96个偏差值。
2. conv2阶段DFD(data flow diagram):
第二层输入数据为第一层输出的27*27*96的像素层,为便于后续处理,每幅像素层的左右两边和上下两边都要填充2个像素;27*27*96的像素数据分成27*27*48的两组像素数据,两组数据分别再两个不同的GPU中进行运算。每组像素数据被5*5*48的卷积核进行卷积运算,卷积核对每组数据的每次卷积都生成一个新的像素。卷积核沿原始图像的x轴方向和y轴方向两个方向移动,移动的步长是1个像素。因此,卷积核在移动的过程中会生成(27-5+2*2)/1+1=27个像素。(27个像素减去5,正好是22,在加上上下、左右各填充的2个像素,即生成26个像素,再加上被减去的5也对应生成一个像素),行和列的27*27个像素形成对原始图像卷积之后的像素层。共有256个5*5*48卷积核;这256个卷积核分成两组,每组针对一个GPU中的27*27*48的像素进行卷积运算。会生成两组27*27*128个卷积后的像素层。这些像素层经过relu2单元的处理,生成激活像素层,尺寸仍为两组27*27*128的像素层。
这些像素层经过pool运算(池化运算)的处理,池化运算的尺度为3*3,运算的步长为2,则池化后图像的尺寸为(57-3)/2+1=13。 即池化后像素的规模为2组13*13*128的像素层;然后经过归一化处理,归一化运算的尺度为5*5;第二卷积层运算结束后形成的像素层的规模为2组13*13*128的像素层。分别对应2组128个卷积核所运算形成。每组在一个GPU上进行运算。即共256个卷积核,共2个GPU进行运算。
反向传播时,每个卷积核对应一个偏差值。即第一层的96个卷积核对应上层输入的256个偏差值。
3. conv3阶段DFD(data flow diagram):
第三层输入数据为第二层输出的2组13*13*128的像素层;为便于后续处理,每幅像素层的左右两边和上下两边都要填充1个像素;2组像素层数据都被送至2个不同的GPU中进行运算。每个GPU中都有192个卷积核,每个卷积核的尺寸是3*3*256。因此,每个GPU中的卷积核都能对2组13*13*128的像素层的所有数据进行卷积运算。卷积核对每组数据的每次卷积都生成一个新的像素。卷积核沿像素层数据的x轴方向和y轴方向两个方向移动,移动的步长是1个像素。因此,运算后的卷积核的尺寸为(13-3+1*2)/1+1=13(13个像素减去3,正好是10,在加上上下、左右各填充的1个像素,即生成12个像素,再加上被减去的3也对应生成一个像素),每个GPU中共13*13*192个卷积核。2个GPU中共13*13*384个卷积后的像素层。这些像素层经过relu3单元的处理,生成激活像素层,尺寸仍为2组13*13*192像素层,共13*13*384个像素层。
4. conv4阶段DFD(data flow diagram):
第四层输入数据为第三层输出的2组13*13*192的像素层;为便于后续处理,每幅像素层的左右两边和上下两边都要填充1个像素;2组像素层数据都被送至2个不同的GPU中进行运算。每个GPU中都有192个卷积核,每个卷积核的尺寸是3*3*192。因此,每个GPU中的卷积核能对1组13*13*192的像素层的数据进行卷积运算。卷积核对每组数据的每次卷积都生成一个新的像素。卷积核沿像素层数据的x轴方向和y轴方向两个方向移动,移动的步长是1个像素。因此,运算后的卷积核的尺寸为(13-3+1*2)/1+1=13(13个像素减去3,正好是10,在加上上下、左右各填充的1个像素,即生成12个像素,再加上被减去的3也对应生成一个像素),每个GPU中共13*13*192个卷积核。2个GPU中共13*13*384个卷积后的像素层。这些像素层经过relu4单元的处理,生成激活像素层,尺寸仍为2组13*13*192像素层,共13*13*384个像素层。
5. conv5阶段DFD(data flow diagram):
第五层输入数据为第四层输出的2组13*13*192的像素层;为便于后续处理,每幅像素层的左右两边和上下两边都要填充1个像素;2组像素层数据都被送至2个不同的GPU中进行运算。每个GPU中都有128个卷积核,每个卷积核的尺寸是3*3*192。因此,每个GPU中的卷积核能对1组13*13*192的像素层的数据进行卷积运算。卷积核对每组数据的每次卷积都生成一个新的像素。卷积核沿像素层数据的x轴方向和y轴方向两个方向移动,移动的步长是1个像素。因此,运算后的卷积核的尺寸为(13-3+1*2)/1+1=13(13个像素减去3,正好是10,在加上上下、左右各填充的1个像素,即生成12个像素,再加上被减去的3也对应生成一个像素),每个GPU中共13*13*128个卷积核。2个GPU中共13*13*256个卷积后的像素层。这些像素层经过relu5单元的处理,生成激活像素层,尺寸仍为2组13*13*128像素层,共13*13*256个像素层。
2组13*13*128像素层分别在2个不同GPU中进行池化(pool)运算处理。池化运算的尺度为3*3,运算的步长为2,则池化后图像的尺寸为(13-3)/2+1=6。 即池化后像素的规模为两组6*6*128的像素层数据,共6*6*256规模的像素层数据。
6. fc6阶段DFD(data flow diagram):
第六层输入数据的尺寸是6*6*256,采用6*6*256尺寸的滤波器对第六层的输入数据进行卷积运算;每个6*6*256尺寸的滤波器对第六层的输入数据进行卷积运算生成一个运算结果,通过一个神经元输出这个运算结果;共有4096个6*6*256尺寸的滤波器对输入数据进行卷积运算,通过4096个神经元输出运算结果;这4096个运算结果通过relu激活函数生成4096个值;并通过drop运算后输出4096个本层的输出结果值。
由于第六层的运算过程中,采用的滤波器的尺寸(6*6*256)与待处理的feature map的尺寸(6*6*256)相同,即滤波器中的每个系数只与feature map中的一个像素值相乘;而其它卷积层中,每个滤波器的系数都会与多个feature map中像素值相乘;因此,将第六层称为全连接层。
第五层输出的6*6*256规模的像素层数据与第六层的4096个神经元进行全连接,然后经由relu6进行处理后生成4096个数据,再经过dropout6处理后输出4096个数据。
7. fc7阶段DFD(data flow diagram):
第六层输出的4096个数据与第七层的4096个神经元进行全连接,然后经由relu7进行处理后生成4096个数据,再经过dropout7处理后输出4096个数据。
8. fc8阶段DFD(data flow diagram):
第七层输出的4096个数据与第八层的1000个神经元进行全连接,经过训练后输出被训练的数值。
Alexnet网络中各个层发挥的作用如下表所述:
在学习过程中,我们使用随机梯度下降法和一批大小为128、动力为0.9、权重衰减为0.0005的样例来训练我们的网络。我们发现,这少量的权重衰减对于模型学习是重要的。换句话说,这里的权重衰减不仅仅是一个正则化矩阵:它减少了模型的训练误差。对于权重w的更新规则为:
其中i是迭代指数,v是动力变量,ε是学习率,是目标关于w、对求值的导数在第i批样例上的平均值。我们用一个均值为0、标准差为0.01的高斯分布初始化了每一层的权重。我们用常数1初始化了第二、第四和第五个卷积层以及全连接隐层的神经元偏差。该初始化通过提供带正输入的ReLU来加速学习的初级阶段。我们在其余层用常数0初始化神经元偏差。
对于所有层都使用了相等的学习率,这是在整个训练过程中手动调整的。我们遵循的启发式是,当验证误差率在当前学习率下不再提高时,就将学习率除以10。学习率初始化为0.01,在终止前降低三次。作者训练该网络时大致将这120万张图像的训练集循环了90次,在两个NVIDIA GTX 580 3GB GPU上花了五到六天。
下面是alexnet的prototxt:把下面的模型复制到点击打开链接然后按shift+enter便可以看到模型以及卷积和全连接的过程
name: "AlexNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
data_param {
source: "examples/imagenet/ilsvrc12_train_lmdb"
batch_size: 256
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
data_param {
source: "examples/imagenet/ilsvrc12_val_lmdb"
batch_size: 50
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}