alexnet 模型详解以及模型的可视化

Alex在2012年提出的alexnet网络结构模型引爆了神经网络的应用热潮,并赢得了2012届图像识别大赛的冠军,使得CNN成为在图像分类上的核心算法模型。

接下来本文对该网络配置结构中各个层进行详细的解读(训练阶段):

注:下述关于卷积核的尺寸来自于Alex在2012年发表的经典论文。

 

1. conv1阶段DFD(data flow diagram):

 

第一层输入数据为原始的227*227*3的图像,这个图像被11*11*3的卷积核进行卷积运算,卷积核对原始图像的每次卷积都生成一个新的像素。卷积核沿原始图像的x轴方向和y轴方向两个方向移动,移动的步长是4个像素。因此,卷积核在移动的过程中会生成(227-11)/4+1=55个像素(227个像素减去11,正好是54,即生成54个像素,再加上被减去的11也对应生成一个像素),行和列的55*55个像素形成对原始图像卷积之后的像素层。共有96个卷积核,会生成55*55*96个卷积后的像素层。96个卷积核分成2组,每组48个卷积核。对应生成2组55*55*48的卷积后的像素层数据。这些像素层经过relu1单元的处理,生成激活像素层,尺寸仍为2组55*55*48的像素层数据。

这些像素层经过pool运算(池化运算)的处理,池化运算的尺度为3*3,运算的步长为2,则池化后图像的尺寸为(55-3)/2+1=27。 即池化后像素的规模为27*27*96;然后经过归一化处理,归一化运算的尺度为5*5;第一卷积层运算结束后形成的像素层的规模为27*27*96。分别对应96个卷积核所运算形成。这96层像素层分为2组,每组48个像素层,每组在一个独立的GPU上进行运算。

反向传播时,每个卷积核对应一个偏差值。即第一层的96个卷积核对应上层输入的96个偏差值。

2. conv2阶段DFD(data flow diagram):

 

第二层输入数据为第一层输出的27*27*96的像素层,为便于后续处理,每幅像素层的左右两边和上下两边都要填充2个像素;27*27*96的像素数据分成27*27*48的两组像素数据,两组数据分别再两个不同的GPU中进行运算。每组像素数据被5*5*48的卷积核进行卷积运算,卷积核对每组数据的每次卷积都生成一个新的像素。卷积核沿原始图像的x轴方向和y轴方向两个方向移动,移动的步长是1个像素。因此,卷积核在移动的过程中会生成(27-5+2*2)/1+1=27个像素。(27个像素减去5,正好是22,在加上上下、左右各填充的2个像素,即生成26个像素,再加上被减去的5也对应生成一个像素),行和列的27*27个像素形成对原始图像卷积之后的像素层。共有256个5*5*48卷积核;这256个卷积核分成两组,每组针对一个GPU中的27*27*48的像素进行卷积运算。会生成两组27*27*128个卷积后的像素层。这些像素层经过relu2单元的处理,生成激活像素层,尺寸仍为两组27*27*128的像素层。

这些像素层经过pool运算(池化运算)的处理,池化运算的尺度为3*3,运算的步长为2,则池化后图像的尺寸为(57-3)/2+1=13。 即池化后像素的规模为2组13*13*128的像素层;然后经过归一化处理,归一化运算的尺度为5*5;第二卷积层运算结束后形成的像素层的规模为2组13*13*128的像素层。分别对应2组128个卷积核所运算形成。每组在一个GPU上进行运算。即共256个卷积核,共2个GPU进行运算。

反向传播时,每个卷积核对应一个偏差值。即第一层的96个卷积核对应上层输入的256个偏差值。

 

3. conv3阶段DFD(data flow diagram):

 

第三层输入数据为第二层输出的2组13*13*128的像素层;为便于后续处理,每幅像素层的左右两边和上下两边都要填充1个像素;2组像素层数据都被送至2个不同的GPU中进行运算。每个GPU中都有192个卷积核,每个卷积核的尺寸是3*3*256。因此,每个GPU中的卷积核都能对2组13*13*128的像素层的所有数据进行卷积运算。卷积核对每组数据的每次卷积都生成一个新的像素。卷积核沿像素层数据的x轴方向和y轴方向两个方向移动,移动的步长是1个像素。因此,运算后的卷积核的尺寸为(13-3+1*2)/1+1=13(13个像素减去3,正好是10,在加上上下、左右各填充的1个像素,即生成12个像素,再加上被减去的3也对应生成一个像素),每个GPU中共13*13*192个卷积核。2个GPU中共13*13*384个卷积后的像素层。这些像素层经过relu3单元的处理,生成激活像素层,尺寸仍为2组13*13*192像素层,共13*13*384个像素层。

 

4. conv4阶段DFD(data flow diagram):

第四层输入数据为第三层输出的2组13*13*192的像素层;为便于后续处理,每幅像素层的左右两边和上下两边都要填充1个像素;2组像素层数据都被送至2个不同的GPU中进行运算。每个GPU中都有192个卷积核,每个卷积核的尺寸是3*3*192。因此,每个GPU中的卷积核能对1组13*13*192的像素层的数据进行卷积运算。卷积核对每组数据的每次卷积都生成一个新的像素。卷积核沿像素层数据的x轴方向和y轴方向两个方向移动,移动的步长是1个像素。因此,运算后的卷积核的尺寸为(13-3+1*2)/1+1=13(13个像素减去3,正好是10,在加上上下、左右各填充的1个像素,即生成12个像素,再加上被减去的3也对应生成一个像素),每个GPU中共13*13*192个卷积核。2个GPU中共13*13*384个卷积后的像素层。这些像素层经过relu4单元的处理,生成激活像素层,尺寸仍为2组13*13*192像素层,共13*13*384个像素层。

 

5. conv5阶段DFD(data flow diagram):

 

第五层输入数据为第四层输出的2组13*13*192的像素层;为便于后续处理,每幅像素层的左右两边和上下两边都要填充1个像素;2组像素层数据都被送至2个不同的GPU中进行运算。每个GPU中都有128个卷积核,每个卷积核的尺寸是3*3*192。因此,每个GPU中的卷积核能对1组13*13*192的像素层的数据进行卷积运算。卷积核对每组数据的每次卷积都生成一个新的像素。卷积核沿像素层数据的x轴方向和y轴方向两个方向移动,移动的步长是1个像素。因此,运算后的卷积核的尺寸为(13-3+1*2)/1+1=13(13个像素减去3,正好是10,在加上上下、左右各填充的1个像素,即生成12个像素,再加上被减去的3也对应生成一个像素),每个GPU中共13*13*128个卷积核。2个GPU中共13*13*256个卷积后的像素层。这些像素层经过relu5单元的处理,生成激活像素层,尺寸仍为2组13*13*128像素层,共13*13*256个像素层。

2组13*13*128像素层分别在2个不同GPU中进行池化(pool)运算处理。池化运算的尺度为3*3,运算的步长为2,则池化后图像的尺寸为(13-3)/2+1=6。 即池化后像素的规模为两组6*6*128的像素层数据,共6*6*256规模的像素层数据。

 

6. fc6阶段DFD(data flow diagram):

 

第六层输入数据的尺寸是6*6*256,采用6*6*256尺寸的滤波器对第六层的输入数据进行卷积运算;每个6*6*256尺寸的滤波器对第六层的输入数据进行卷积运算生成一个运算结果,通过一个神经元输出这个运算结果;共有4096个6*6*256尺寸的滤波器对输入数据进行卷积运算,通过4096个神经元输出运算结果;这4096个运算结果通过relu激活函数生成4096个值;并通过drop运算后输出4096个本层的输出结果值。

     由于第六层的运算过程中,采用的滤波器的尺寸(6*6*256)与待处理的feature map的尺寸(6*6*256)相同,即滤波器中的每个系数只与feature map中的一个像素值相乘;而其它卷积层中,每个滤波器的系数都会与多个feature map中像素值相乘;因此,将第六层称为全连接层。

第五层输出的6*6*256规模的像素层数据与第六层的4096个神经元进行全连接,然后经由relu6进行处理后生成4096个数据,再经过dropout6处理后输出4096个数据。

 

7. fc7阶段DFD(data flow diagram):

 

第六层输出的4096个数据与第七层的4096个神经元进行全连接,然后经由relu7进行处理后生成4096个数据,再经过dropout7处理后输出4096个数据。

 

8. fc8阶段DFD(data flow diagram):

 

第七层输出的4096个数据与第八层的1000个神经元进行全连接,经过训练后输出被训练的数值。

 

Alexnet网络中各个层发挥的作用如下表所述:

 

在学习过程中,我们使用随机梯度下降法和一批大小为128、动力为0.9、权重衰减为0.0005的样例来训练我们的网络。我们发现,这少量的权重衰减对于模型学习是重要的。换句话说,这里的权重衰减不仅仅是一个正则化矩阵:它减少了模型的训练误差。对于权重w的更新规则为:

其中i是迭代指数,v是动力变量,ε是学习率,是目标关于w、对求值的导数在第i批样例上的平均值。我们用一个均值为0、标准差为0.01的高斯分布初始化了每一层的权重。我们用常数1初始化了第二、第四和第五个卷积层以及全连接隐层的神经元偏差。该初始化通过提供带正输入的ReLU来加速学习的初级阶段。我们在其余层用常数0初始化神经元偏差。
    对于所有层都使用了相等的学习率,这是在整个训练过程中手动调整的。我们遵循的启发式是,当验证误差率在当前学习率下不再提高时,就将学习率除以10。学习率初始化为0.01,在终止前降低三次。作者训练该网络时大致将这120万张图像的训练集循环了90次,在两个NVIDIA GTX 580 3GB GPU上花了五到六天。

 下面是alexnet的prototxt:把下面的模型复制到点击打开链接然后按shift+enter便可以看到模型以及卷积和全连接的过程

name: "AlexNet"

layer {

  name: "data"

  type: "Data"

  top: "data"

  top: "label"

  include {

    phase: TRAIN

  }

  transform_param {

    mirror: true

    crop_size: 227

    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"

  }

  data_param {

    source: "examples/imagenet/ilsvrc12_train_lmdb"

    batch_size: 256

    backend: LMDB

  }

}

layer {

  name: "data"

  type: "Data"

  top: "data"

  top: "label"

  include {

    phase: TEST

  }

  transform_param {

    mirror: false

    crop_size: 227

    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"

  }

  data_param {

    source: "examples/imagenet/ilsvrc12_val_lmdb"

    batch_size: 50

    backend: LMDB

  }

}

layer {

  name: "conv1"

  type: "Convolution"

  bottom: "data"

  top: "conv1"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 96

    kernel_size: 11

    stride: 4

    weight_filler {

      type: "gaussian"

      std: 0.01

    }

    bias_filler {

      type: "constant"

      value: 0

    }

  }

}

layer {

  name: "relu1"

  type: "ReLU"

  bottom: "conv1"

  top: "conv1"

}

layer {

  name: "norm1"

  type: "LRN"

  bottom: "conv1"

  top: "norm1"

  lrn_param {

    local_size: 5

    alpha: 0.0001

    beta: 0.75

  }

}

layer {

  name: "pool1"

  type: "Pooling"

  bottom: "norm1"

  top: "pool1"

  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2

  }

}

layer {

  name: "conv2"

  type: "Convolution"

  bottom: "pool1"

  top: "conv2"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 256

    pad: 2

    kernel_size: 5

    group: 2

    weight_filler {

      type: "gaussian"

      std: 0.01

    }

    bias_filler {

      type: "constant"

      value: 0.1

    }

  }

}

layer {

  name: "relu2"

  type: "ReLU"

  bottom: "conv2"

  top: "conv2"

}

layer {

  name: "norm2"

  type: "LRN"

  bottom: "conv2"

  top: "norm2"

  lrn_param {

    local_size: 5

    alpha: 0.0001

    beta: 0.75

  }

}

layer {

  name: "pool2"

  type: "Pooling"

  bottom: "norm2"

  top: "pool2"

  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2

  }

}

layer {

  name: "conv3"

  type: "Convolution"

  bottom: "pool2"

  top: "conv3"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 384

    pad: 1

    kernel_size: 3

    weight_filler {

      type: "gaussian"

      std: 0.01

    }

    bias_filler {

      type: "constant"

      value: 0

    }

  }

}

layer {

  name: "relu3"

  type: "ReLU"

  bottom: "conv3"

  top: "conv3"

}

layer {

  name: "conv4"

  type: "Convolution"

  bottom: "conv3"

  top: "conv4"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 384

    pad: 1

    kernel_size: 3

    group: 2

    weight_filler {

      type: "gaussian"

      std: 0.01

    }

    bias_filler {

      type: "constant"

      value: 0.1

    }

  }

}

layer {

  name: "relu4"

  type: "ReLU"

  bottom: "conv4"

  top: "conv4"

}

layer {

  name: "conv5"

  type: "Convolution"

  bottom: "conv4"

  top: "conv5"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  convolution_param {

    num_output: 256

    pad: 1

    kernel_size: 3

    group: 2

    weight_filler {

      type: "gaussian"

      std: 0.01

    }

    bias_filler {

      type: "constant"

      value: 0.1

    }

  }

}

layer {

  name: "relu5"

  type: "ReLU"

  bottom: "conv5"

  top: "conv5"

}

layer {

  name: "pool5"

  type: "Pooling"

  bottom: "conv5"

  top: "pool5"

  pooling_param {

    pool: MAX

    kernel_size: 3

    stride: 2

  }

}

layer {

  name: "fc6"

  type: "InnerProduct"

  bottom: "pool5"

  top: "fc6"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  inner_product_param {

    num_output: 4096

    weight_filler {

      type: "gaussian"

      std: 0.005

    }

    bias_filler {

      type: "constant"

      value: 0.1

    }

  }

}

layer {

  name: "relu6"

  type: "ReLU"

  bottom: "fc6"

  top: "fc6"

}

layer {

  name: "drop6"

  type: "Dropout"

  bottom: "fc6"

  top: "fc6"

  dropout_param {

    dropout_ratio: 0.5

  }

}

layer {

  name: "fc7"

  type: "InnerProduct"

  bottom: "fc6"

  top: "fc7"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  inner_product_param {

    num_output: 4096

    weight_filler {

      type: "gaussian"

      std: 0.005

    }

    bias_filler {

      type: "constant"

      value: 0.1

    }

  }

}

layer {

  name: "relu7"

  type: "ReLU"

  bottom: "fc7"

  top: "fc7"

}

layer {

  name: "drop7"

  type: "Dropout"

  bottom: "fc7"

  top: "fc7"

  dropout_param {

    dropout_ratio: 0.5

  }

}

layer {

  name: "fc8"

  type: "InnerProduct"

  bottom: "fc7"

  top: "fc8"

  param {

    lr_mult: 1

    decay_mult: 1

  }

  param {

    lr_mult: 2

    decay_mult: 0

  }

  inner_product_param {

    num_output: 1000

    weight_filler {

      type: "gaussian"

      std: 0.01

    }

    bias_filler {

      type: "constant"

      value: 0

    }

  }

}

layer {

  name: "accuracy"

  type: "Accuracy"

  bottom: "fc8"

  bottom: "label"

  top: "accuracy"

  include {

    phase: TEST

  }

}

layer {

  name: "loss"

  type: "SoftmaxWithLoss"

  bottom: "fc8"

  bottom: "label"

  top: "loss"

}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值