机器学习鸭
文章平均质量分 83
机器学习
我叫陈叉叉叉叉
这个作者很懒,什么都没留下…
展开
-
【风控】评分卡建模的流程和要点
评分卡流程和注意点原创 2022-11-27 11:17:20 · 1141 阅读 · 0 评论 -
OptBinning 特征分箱包使用介绍
【代码】OptBinning 特征分箱包使用介绍。原创 2022-11-12 17:18:24 · 3302 阅读 · 1 评论 -
【特征选择】特征选择指标和方法小汇总
1、对特征选择的指标提供计算方法和代码,包括有:相关系数、互信息、KS、IV、L1正则化、单特征模型评分、特征重要度或系数大小、boruta特征评价、递归特征消除排序。2、提供特征选择的方法和代码:前向搜索法、遗传算法启发式搜索法,最佳特征检测法,# 本次项目使用的数据为以下数据, from sklearn . datasets import load_breast_cancer。原创 2022-10-04 09:48:30 · 2102 阅读 · 0 评论 -
朴素贝叶斯简单实现
朴素贝叶斯原创 2022-08-26 12:44:38 · 149 阅读 · 0 评论 -
【特征选择】使用遗传算法进行特征选择
遗传算法寻优cross_val_score(lgb,train_X,train_y,scoring='f1',cv=sKfold).mean() # 使用全部特征进行训练0.8508040614085857train_1 = train.drop('label',1)cols = train_1.columnstrain_1.head() 经营期限起 是否广告经营 是否城镇 从业人数 注册资本原创 2020-11-02 23:49:44 · 4787 阅读 · 4 评论 -
【category_encoders】分类特征编码方式
Table of Contents1 OrdinalEncoder 序列编码2 OneHotEncoder 独热编码3 TargetEncoder 目标编码4 Binary Encoder二进制编码5 BaseNEncoder 贝叶斯编码6 LeaveOneOutEncoder 留一法7 HashingEncoder 哈希编码8原创 2020-10-29 19:30:38 · 2224 阅读 · 0 评论 -
【分箱操作】决策树、卡方、分位数、等距和映射分箱操作代码实现
from sklearn.tree import DecisionTreeClassifierimport pandas as pdimport numpy as npdata = pd.read_csv('train.csv',index_col = 'id')data.head()决策树分箱def optimal_binning_boundary(x: pd.Series, y: pd.Series) -> list: ''' 利用决策树获得最优分箱的边界原创 2020-09-21 23:38:24 · 2456 阅读 · 1 评论 -
《模型融合》投票法、stacking和blending
import numpy as np import pandas as pdimport matplotlib.pyplot as plt import seaborn as sns%matplotlib inlineplt.rcParams["font.sans-serif"] = ["FangSong"] plt.rcParams["axes.unicode_minus"] = False import warningswarnings.filterwarnings("ignore")原创 2020-09-27 22:53:38 · 714 阅读 · 0 评论 -
SMOTE抽样 数据不平衡的问题
from imblearn.over_sampling import SMOTEimport pandas as pd C:\ProgramData\Anaconda3\lib\importlib\_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject ret原创 2020-08-29 10:05:20 · 652 阅读 · 0 评论 -
BP神经网络和Stacking
from keras.models import Sequential # 按顺序建立的神经网络模型from keras.layers import Dense # dense 全连接层 import numpy as np import matplotlib.pyplot as plt %matplotlib inlineimport tensorflow as tfUsing TensorFlow backend.import pandas as pd from sklearn.原创 2020-08-29 08:18:22 · 762 阅读 · 1 评论 -
【模型调参】lgb的参数调节
Table of Contents1 数据导入2 模型挑选3 模型调参3.1 设立初始参数3.2 调解n_estimators3.3 max_depth/num_leaves3.4 min_child_samples/min_child_weight3.5 subsample/colsample_bytree(0.6,1)3.6&n原创 2020-08-13 21:50:16 · 3313 阅读 · 0 评论 -
【特征选择】特征选择指标和方法小汇总
1、对部分特征选择的指标提供计算方法和代码,包括有:相关系数、互信息、KS、IV、L1正则化、单特征模型评分、特征重要度或系数大小、boruta特征评价、递归特征消除排序。2、提供特征选择的方法和代码:前向搜索法、遗传算法启发式搜索法,最佳特征检测法,# 本次项目使用的数据为以下数据, from sklearn . datasets import load_breast_cancer。原创 2020-08-12 19:04:11 · 4737 阅读 · 1 评论