BFS----1到n点的最短距离

该程序使用广度优先搜索(BFS)算法求解1号点到n号点在有向图中的最短距离,若图中存在重边和自环,边长均为1。在C++代码中,通过邻接表存储图结构,并用队列进行层次遍历,找到最短路径。如果无法从1号点到达n号点,则输出-1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环。所有边的长度都是 1,点的编号为 1~n

请你求出 1号点到 n号点的最短距离,如果从 1号点无法走到 n号点,输出 -1

输入格式
第一行包含两个整数 n和 m
接下来 m行,每行包含两个整数 a和 b,表示存在一条从 a走到 b的长度为 1的边。

输出格式
输出一个整数,表示 1
 号点到 n
 号点的最短距离。

数据范围
1≤n,m≤10^5
 

#include<bits/stdc++.h>
using namespace std;

const int N=1e5+5;
int n,m;
int dist[N];//每个点到1号点的最短距离 
vector<int> graph[N];
queue<int> q;

void add(int a,int b){
    graph[a].push_back(b);//邻接表存储图 vector简单一点。。。
    
}

int BFS(){
    q.push(1);//插入头节点 
    memset(dist,0x3f,sizeof(dist));//初始化为正无穷 
    dist[1]=0;//第一个点到它自己的距离为零 
    
    while(!q.empty()){
        //push,pop逐级逐层查询并赋值dist[i]
        int f=q.front(); 
        q.pop();
        //取出头节点 
        
        int lenf=graph[f].size();
        
        for(int i=0;i<lenf;i++){
            int j=graph[f][i];
            if(dist[j]>dist[f]+1){       //因为原始定义的是正无穷,所以只要比父节点 +1大,就更新。 
                dist[j]=dist[f]+1;       //每条边的长度为1; 
                q.push(j);                //引出下一层
            }
        }
    }
    
    return dist[n] != 0x3f3f3f3f ? dist[n] : -1;
    
    
}

int main(){
    cin>>n>>m;
    for(int i=0;i<m;i++){
        int a,b;
        cin>>a>>b;
        add(a,b);
    }
    cout<<BFS();
    return 0;
}

//2023.7.28

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值