大整数乘法中的分治思想(TOOM-COOK的一种使用方法)

算法分析与设计学习中,接触到一道大整数乘法问题,分享出来,原题目如下:

算法分析在用分治法求两个n位大整数u和v的乘积时,将u和v都分割为长度为n/3的3段。证明可以用5次n/3位整数的乘法求得uv的值。按此思想设计大整数乘积的分治方法,并分析算法的计算复杂性。

先参考一道较为简单的题目:设有两个n位二进制数X,Y,求它们的乘积XY。
分析:按照一般算法,根据小学数学乘法规律,两个数中每位数都需要相应做乘法,则需要的时间复杂度是O(n^2)。

此时,我们考虑将X,Y分为高位、低位,即
X = | A| B | , Y = | C| D|
A,B,C,D均为n/2位,求XY的问题可以转换为:

	X * Y = (A * 2^(n/2) +B )  *(C * 2^(n/2) +D )
			 = AC * 2^n + (AD + BC) * 2^(n/2)+BD			 

则,可以看出利用分治法后,进行了4次n/2位的乘法运算。但是并没有涉及算法性能优化,时间复杂度依然是O(n^2)。

这个算法进行性能提升可以使用如下方法:
先计算


    U = (A + B)(C + D), V = AC, W = BD
	则 Z = XY = V * 2^n +(U - V- W ) * 2^(n/2) + W


上面过程中,由于只使用了U、V、W涉及的3次乘法,比没有优化的少了一种,时间复杂度就降低到了在这里插入图片描述

具体 过程可以参考 Karatsuba算法

Karatsuba算法伪代码实现如下

procedure karatsuba(num1, num2)
  if (num1 < 10) or (num2 < 10)
    return num1*num2
  /* calculates the size of the numbers */
  m = max(size_base10(num1), size_base10(num2))
  m2 = m/2
  /* split the digit sequences about the middle */
  high1, low1 = split_at(num1, m2)
  high2, low2 = split_at(num2, m2)
  /* 3 calls made to numbers approximately half the size */
  z0 = karatsuba(low1,low2)
  z1 = karatsuba((low1+high1),(low2+high2))
  z2 = karatsuba(high1,high2)
  return (z2*10^(2*m2))+((z1-z2-z0)*10^(m2))+(z0)

具体例子可以参照这个图片
Karatsuba算法

那参

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值