二叉树是计算机科学中常见的数据结构,广泛应用于各种算法和数据操作。遍历二叉树是操作二叉树的重要方法,其中层序遍历、前序遍历、中序遍历和后序遍历是四种基本的遍历方式。本文将详细讲解这四种遍历方法,并提供相应的代码示例。
二叉树节点定义
首先,我们定义一个二叉树节点类 TreeNode
,用于表示二叉树中的每个节点。该类包含节点值、左子节点和右子节点的引用。
package org.example.tree;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int val){
this.val = val;
}
@Override
public String toString() {
return "" + val;
}
}
层序遍历
层序遍历(也称为广度优先遍历)按照从上到下、从左到右的顺序访问二叉树的每一层节点。这种遍历方法使用队列来实现。
代码实现
public static List<TreeNode> levelOrder(TreeNode root){
List<TreeNode> result = new ArrayList<>();
if (root == null) {
return result;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
result.add(node);
if (node.left != null) {
queue.add(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
return result;
}
运行结果
levelOrder begin:
1
2
3
4
5
6
7
前序遍历
前序遍历的顺序是:根节点 -> 左子树 -> 右子树。这意味着我们首先访问根节点,然后递归访问左子树,最后递归访问右子树。
代码实现
public static List<TreeNode> preOrder(List<TreeNode> result, TreeNode node){
if (result == null) {
result = new ArrayList<>();
}
if (node == null) {
return result;
}
result.add(node);
if (node.left != null) {
preOrder(result, node.left);
}
if (node.right != null) {
preOrder(result, node.right);
}
return result;
}
运行结果
preOrder begin:
1
2
4
5
3
6
7
中序遍历
中序遍历的顺序是:左子树 -> 根节点 -> 右子树。这意味着我们首先递归访问左子树,然后访问根节点,最后递归访问右子树。
代码实现
public static List<TreeNode> inOrder(List<TreeNode> result, TreeNode node){
if (result == null) {
result = new ArrayList<>();
}
if (node.left != null) {
inOrder(result, node.left);
}
result.add(node);
if (node.right != null) {
inOrder(result, node.right);
}
return result;
}
运行结果
inOrder begin:
4
2
5
1
6
3
7
后序遍历
后序遍历的顺序是:左子树 -> 右子树 -> 根节点。这意味着我们首先递归访问左子树,然后递归访问右子树,最后访问根节点。
代码实现
public static List<TreeNode> postOrder(List<TreeNode> result, TreeNode node){
if (result == null) {
result = new ArrayList<>();
}
if (node.left != null) {
postOrder(result, node.left);
}
if (node.right != null) {
postOrder(result, node.right);
}
result.add(node);
return result;
}
运行结果
postOrder begin:
4
5
2
6
7
3
1
完整示例
以下是完整的代码示例,包括二叉树的构建和各种遍历方法的调用:
package org.example.tree;
import java.util.ArrayList;
public class binary_tree {
public static void main(String[] args) {
TreeNode n1 = new TreeNode(1);
TreeNode n2 = new TreeNode(2);
TreeNode n3 = new TreeNode(3);
TreeNode n4 = new TreeNode(4);
TreeNode n5 = new TreeNode(5);
TreeNode n6 = new TreeNode(6);
TreeNode n7 = new TreeNode(7);
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
n3.left = n6;
n3.right = n7;
System.out.println("levelOrder begin:");
TreeNode.levelOrder(n1).forEach(it -> System.out.println(it.val));
System.out.println("preOrder begin:");
TreeNode.preOrder(new ArrayList<>(), n1).forEach(it -> System.out.println(it.val));
System.out.println("inOrder begin:");
TreeNode.inOrder(new ArrayList<>(), n1).forEach(it -> System.out.println(it.val));
System.out.println("postOrder begin:");
TreeNode.postOrder(new ArrayList<>(), n1).forEach(it -> System.out.println(it.val));
}
}
如何构建一个N层的完美二叉树?
class TreeNode {
int value;
TreeNode left;
TreeNode right;
TreeNode(int value) {
this.value = value;
this.left = null;
this.right = null;
}
}
public class FullBinaryTree {
// 主函数,用于创建树并调用构建函数
public static void main(String[] args) {
int N = 3; // 指定树的层数
TreeNode root = buildFullBinaryTree(1, N);
}
// 递归函数,用于构建满二叉树
public static TreeNode buildFullBinaryTree(int currentLevel, int maxLevel) {
if (currentLevel > maxLevel) return null;
TreeNode node = new TreeNode(currentLevel); // 创建当前节点
node.left = buildFullBinaryTree(currentLevel + 1, maxLevel); // 递归创建左子树
node.right = buildFullBinaryTree(currentLevel + 1, maxLevel); // 递归创建右子树
return node;
}
}
解析
- 使用递归方法来构建树。
- 给定层数N,从1开始,直到N。
- 对于每个节点,创建其左右子节点,直到达到指定的层数