电科矩阵理论CH2-3

1.与向量范数相容的矩阵范数
在这里插入图片描述
结论:在这里插入图片描述
在这里插入图片描述
那么
在这里插入图片描述
2.引出算子范数
解:
在这里插入图片描述
若定义
在这里插入图片描述
在这里插入图片描述
因为下标,还有上面的转换过程,||Au||变成了向量范数,由CH2-1知向量范数可以使有限维空间向量投影到实数域,那么这里同样可行吗???
首先可证
在这里插入图片描述
接着,给出定义:与向量范数相容的矩阵范数称为算子范数。也就是说
算子范数也是矩阵范数,矩阵范数可以由向量范数诱导,算子范数提供了这个方法
在这里插入图片描述
应该是||A||m
在这里插入图片描述
只有一个条件就可以判定矩阵范数和向量范数的相容性
3.算子范数的特性
在这里插入图片描述
证明:
在这里插入图片描述
问:
在这里插入图片描述
4.
在这里插入图片描述
在这里插入图片描述
5.算子范数的计算
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这一条左边等号成立,因为是相容的,这前面已经定义了
在这里插入图片描述
6.谱范数的性质
在这里插入图片描述
注意:谱范数和Frobenius范数都具有酉不变性
在这里插入图片描述
结论:
在这里插入图片描述
7.范数的两个应用
在这里插入图片描述
在这里插入图片描述
②矩阵逆的扰动分析
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该定理或该定理证明过程中的重要结论:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值