1.与向量范数相容的矩阵范数
结论:
那么
2.引出算子范数
解:
若定义
因为下标,还有上面的转换过程,||Au||变成了向量范数,由CH2-1知向量范数可以使有限维空间向量投影到实数域,那么这里同样可行吗???
首先可证
接着,给出定义:与向量范数相容的矩阵范数称为算子范数。也就是说
算子范数也是矩阵范数,矩阵范数可以由向量范数诱导,算子范数提供了这个方法
应该是||A||m
只有一个条件就可以判定矩阵范数和向量范数的相容性
3.算子范数的特性
证明:
问:
4.
5.算子范数的计算
这一条左边等号成立,因为是相容的,这前面已经定义了
6.谱范数的性质
注意:谱范数和Frobenius范数都具有酉不变性
结论:
7.范数的两个应用
②矩阵逆的扰动分析
该定理或该定理证明过程中的重要结论:
电科矩阵理论CH2-3
最新推荐文章于 2022-10-01 23:16:02 发布