第一节
向量的范数
证明:
证明:
那么
证明:
证明:
证明:
证明:
第二节
矩阵范数
证明:
这个证明很重要!考过
矩阵二范数酉不变性证明:
证明:
第三节
算子范数
将向量x视为列矩阵,再用第二节中的相容性定理,但是矩阵范数和向量范数还是存在差异的。
证明:
证明:
证明:
说明:算子范数是相容的矩阵范数。
证明:
向量范数是自相容的。
证明:
证明:
考例4 的可能性较大!!!
证明:
证明:
证明(1):
证明(2):
证明(3):
提示:
谱范数的性质证明多依赖于谱半径自身的计算性质。
证明(1):
证明(2):
相容的矩阵范数的一个重要性质见课本P64
(2)证明见课本P68
算子范数是相容的矩阵范数
谱半径与矩阵范数
证明:
即
非奇异线性方程组的扰动分析
定理4很重要!!考博也考过
证明:见课本P76
证明: