统计物理考试复习

考虑经典单原子分子理想气体,设其粒子总数未N, 试计算该气体在温度为T的化学势能μ,并求μ=0时的温度。

要记住巨配分函数的经典极限表达式,特别是N!这一项,特别关键。

建议将单粒子的配分函数积分即为Z,化学势能只对a求导,最后即使细节出错,也不会扣分。

 

这一道题关键是写出正则分布配分函数。

 建议不要将能量直接写出来,多用抽象的记号

F =-kTln(Z), 用F对T求导计算熵,注意有个负号

第二项求导容易求错,注意。

求磁矩和磁化率需要注意一下,求磁化率需要在求一次导

 

 

 

 

 

e = cp ,直接用玻色统计积分就行, 最后有一个玻色积分难处理。

 

 

 关键点是自由气体态密度是一个常数。

这道题,需要记住费米子配分函数的能级形式

然后写出巨配分函数,然后S仍然是对温度T求导,就可以拆出那几项,随便写写

 

Statistical Physics Dr. A. J. Macfarlane1 Lent 1998 Contents Introduction v 1 Quantum StatisticalMechanics 1 1.1 Introduction to Quantum Statistical Mechanics . . . . . . . . . . . . 1 1.2 Canonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Towards thermodynamic variables . . . . . . . . . . . . . . . . . . . 5 1.5 Towards applications . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.1 N particle partition function . . . . . . . . . . . . . . . . . . 7 1.5.2 Extensive and intensive variables . . . . . . . . . . . . . . . 8 1.5.3 Density of states . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.4 Gas of spinless particles . . . . . . . . . . . . . . . . . . . . 9 1.5.5 Entropy and the Gibbs paradox . . . . . . . . . . . . . . . . . 9 1.6 Harmonic oscillator model . . . . . . . . . . . . . . . . . . . . . . . 10 2 Thermodynamics 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Applications of dE = T dS − PdV . . . . . . . . . . . . . . . . . . 12 2.2.1 Integrability conditions . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Specific heats . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Adiabatic changes . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.4 Entropy of n moles of ideal gas . . . . . . . . . . . . . . . . 14 2.2.5 van der Waal’s equation . . . . . . . . . . . . . . . . . . . . 15 2.2.6 The Joule effect . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Some thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 The second law . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Heat flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Grand ensemble methods 19 3.1 The formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Systems of non-interacting identical particles . . . . . . . . . . . . . 21 3.2.1 A lit
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值