考虑经典单原子分子理想气体,设其粒子总数未N, 试计算该气体在温度为T的化学势能μ,并求μ=0时的温度。
要记住巨配分函数的经典极限表达式,特别是N!这一项,特别关键。
建议将单粒子的配分函数积分即为Z,化学势能只对a求导,最后即使细节出错,也不会扣分。
这一道题关键是写出正则分布配分函数。
建议不要将能量直接写出来,多用抽象的记号
F =-kTln(Z), 用F对T求导计算熵,注意有个负号
第二项求导容易求错,注意。
求磁矩和磁化率需要注意一下,求磁化率需要在求一次导
e = cp ,直接用玻色统计积分就行, 最后有一个玻色积分难处理。
关键点是自由气体态密度是一个常数。
这道题,需要记住费米子配分函数的能级形式
然后写出巨配分函数,然后S仍然是对温度T求导,就可以拆出那几项,随便写写