(1) 比较简单,直接算略,e=2
(2) 特点是单点,焦点弦,证明角度关系(参数方程暴力做法这里不讲了,注意斜率不存在的情况)
几何法:思维难度较大,注意思考是如何转换的
做角BAF的角平分线交AB于C,要证角BAF = 2角BFC,只要证角BAF=角CFA,只要证AC=CF,只要证CD是AF的中垂线。经过观察发现如果CD是AF的中垂线,那么CD所在的直线就是准线。
因此过程这样写:
设双曲线的准线与AB交于C,于AF交于D,作BE垂直CD
显然三角形EBC相似于三角形DAC
所以BE/AD=AC/BC
由于准线CD恰好是AF的中垂线,因此AF=2AD,又由于准线的性质2EB=BD
因此BF/AF=AC/BC,所以CF是角ADB的角平分线。所以角BAF = 2角BFC。