简单CNN完善版

增加了了Tensorborad中命名空间,以及图的描述

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

# 每个批次的大小
batch_size = 50
# 一共有多少批次
n_batch = mnist.train.num_examples // batch_size


# 参数概要
def variable_summary(var):
    with tf.name_scope("summaries"):
        mean = tf.reduce_mean(var)
        tf.summary.scalar("mean", mean)   # 平均值
    with tf.name_scope("stddev"):
        stddev = tf.sqrt(tf.reduce_mean(var-mean))
    tf.summary.scalar("stddev", stddev)   # 标准差
    tf.summary.scalar("max", tf.reduce_max(var))  # 最大值
    tf.summary.scalar("min", tf.reduce_min(var))  # 最小值
    tf.summary.histogram("histogram", var)   # 直方图


# 初始化权值
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


# 初始化偏置
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


# 卷积层
def conv2d(x, W):
    # W[filter_height, filter_width, in_channels, out_channels]
    # filter_height 卷积核高度 filter_width 卷积核宽度 in_channels 输入通道数 out_channels 输出通道数
    # strider[0] = strider[3] = 1
    # strider[1] 代表x方向步长
    # strider[2] 代表y方向步长
    # padding = "SAME" "VALID"

    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")


# 池化层
def max_pool_2x2(x):
    # ksize (1,x,y,1) 代表池化层的大小
    # strides代表步长,参数设置与conv2d相同
    return tf.nn.max_pool(x, ksize=[1, 2, 2,1],strides=[1, 2, 2, 1],padding="SAME")

# 命名空间
with tf.name_scope("input"):
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 28 * 28])
    y = tf.placeholder(tf.float32, [None, 10])
    with tf.name_scope("x_image"):
        # 改变图片的输入格式
        # [batch, in_height, in_weight, in_channels]
        # -1代表批次任意
        x_image = tf.reshape(x, [-1, 28, 28, 1])


with tf.name_scope("Conv1"):
    # 初始化第一个卷积层和偏置
    with tf.name_scope("W_conv1"):
        W_conv1 = weight_variable([5, 5, 1, 32])  # 5*5的卷积窗口,32个卷积核从1个平面提取特征
    with tf.name_scope("b_conv1"):
        b_conv1 = bias_variable([32])  # 每个卷积核一个偏置
    # 进行第一层卷积操作,并进行relu激活函数,在进行2*2最大池化
    with tf.name_scope("conv2d_1"):
        conv2d_1 = conv2d(x_image, W_conv1) + b_conv1
    with tf.name_scope("relu"):
        h_conv1 = tf.nn.relu(conv2d_1)
    with tf.name_scope("h_pool1"):
        h_pool1 = max_pool_2x2(h_conv1)  # 每个卷积核一个偏置

with tf.name_scope("Conv2"):
    # 初始化第二个卷积核的权值和偏置
    with tf.name_scope("W_conv2"):
        W_conv2 = weight_variable([5, 5, 32, 64])  # 5*5的卷积窗口,64个卷积核从32个平面提取特征
    with tf.name_scope("b_conv2"):
        b_conv2 = bias_variable([64])
    with tf.name_scope("conv2d_2"):
        conv2d_2 = conv2d(h_pool1, W_conv2) + b_conv2
    with tf.name_scope("relu"):
        # 进行第二层卷积操作并加偏置和激活函数
        h_conv2 = tf.nn.relu(conv2d_2)
    with tf.name_scope("h_pool2"):
        h_pool2 = max_pool_2x2(h_conv2)

# 28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
# 第二次卷积之后还是14*14, 第二次池化后变为7*7
# 经上述操作后变为64张7*7的图片

with tf.name_scope("fc1"):
    # 初始化第一个全连接层
    with tf.name_scope("W_fc1"):
        W_fc1 = weight_variable([7 * 7 * 64, 1024])  # 全连接层的第一层有1024个
    with tf.name_scope("b_fc1"):
        b_fc1 = bias_variable([1024])
    # 把池化层的输出一维化
    with tf.name_scope("h_pool2_flat"):
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    # 第一个全连接层输入并过relu激活函数
    with tf.name_scope("wx_plus_b1"):
        wx_plus_b1 = tf.matmul(h_pool2_flat, W_fc1) + b_fc1
    with tf.name_scope("relu"):
        h_fc1 = tf.nn.relu(wx_plus_b1)
    # keep_prob表示神经元输出的概率
    with tf.name_scope("keep_drop"):
        keep_prob = tf.placeholder(tf.float32)
    with tf.name_scope("h_fc1_drop"):
        # 对第一个神经元进行dropout操作
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

with tf.name_scope("fc2"):
    with tf.name_scope("W_fc2"):
        W_fc2 = weight_variable([1024, 10])
    with tf.name_scope("b_fc2"):
        b_fc2 = bias_variable([10])
    with tf.name_scope("wx_plus_b2"):
        wx_plus_b2 = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    with tf.name_scope("softmax"):
        # 计算输出,使用softmax
        prediction = tf.nn.softmax(wx_plus_b2)

# 交叉熵代价函数
with tf.name_scope("cross_entropy"):
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    tf.summary.scalar("cross_entropy", cross_entropy)

# 使用AdamOptimizer优化器训练
with tf.name_scope("train"):
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 求准确率
with tf.name_scope("accuracy"):
    with tf.name_scope("correct_prediction"):
        # 结果存放在一个布尔列表中
        correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
    with tf.name_scope("accuracy"):
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 合并所有的summary
merged = tf.summary.merge_all()

with tf.Session() as sess:
    # 初始化
    sess.run(tf.global_variables_initializer())
    train_writer = tf.summary.FileWriter("logs/train", sess.graph)
    test_writer = tf.summary.FileWriter("logs/test", sess.graph)
    for i in range(1001):
        # 训练模型
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys, keep_prob:0.5})
        # 记录训练集的计算的参数
        summary = sess.run(merged, feed_dict={x:batch_xs, y:batch_ys, keep_prob:1.0})
        train_writer.add_summary(summary,i)
        # 记录测试集的计算的参数
        batch_xs, batch_ys = mnist.test.next_batch(batch_size)
        summary = sess.run(merged, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0})
        test_writer.add_summary(summary, i)

        if i % 100 == 0:
            test_acc = sess.run(accuracy, feed_dict={x:mnist.test.images,y:mnist.test.labels, keep_prob:1.0})
            train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images[:10000],y:mnist.train.labels[:10000],keep_prob:1.0})
            print("Iter " + str(i) + ", Testing Accuracy= " + str(test_acc) + ", Training Accuracy= " + str(train_acc))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值