理想费米气体的量子统计推导

本文探讨了理想费米气体的哈密顿量及总粒子数算符的定义,详细解析了费米产生和湮灭算符的正对易关系,并通过泡利不相容原理说明了本征值特性。通过引入巨配分函数,推导了费米狄拉克分布,并解释了如何从离散求和转换到连续积分以计算总内能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理想费米气体的哈密顿量可以写为

H=\sum \varepsilon (p)a^{\dagger }_{p}a_{p}                                   (1)         

其中\varepsilon =p^{2}/2m  p为动量

总粒子数算符定义为

\hat{N}=\sum a^{\dagger }_{p}a_{p}                                             (2)

费米产生,湮灭算符满足正对易关系

[a_{p},a^{\dagger }_{p'}]=\delta _{pp'},以及[a^{\dagger }_{p},a^{\dagger }_{p'}]=[a_{p},a_{p'}]=0

可以证明a^{\dagger }_{p}a_{p}的本征值只有0,和1,这就是泡利不相容原理

体系的巨配分函数为Z=Tr (exp[-\beta (\hat{H}-\mu \hat{N})])          (3)

由(1)(2)带入(3)有

Z=Tr (exp[-\beta\sum (\epsilon (p)-\mu )a^{\dagger }_{p}a_{p}])                          (4)

将(4)的exp内的加号写为乘号

Z=Tr (\prod exp[-\beta(\epsilon (p)-\mu )a^{\dagger }_{p}a_{p}])                          

对于单个粒子,a^{\dagger }_{p}a_{p}的本征值只有0,和1。所以

Z=\prod (1+exp(-\beta (\varepsilon (p)-\mu )))

注意,这里的乘法是对所有可能的p,有了Z可以计算总的内能

单电子的平均分布就是费米狄拉克分布

最后计算中求和变为连续的积分即可得到到答案。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值