半导体中本征载流子的浓度推导

本文介绍了电子态密度的概念及其计算方法。通过将空间映射到动量空间并利用德布罗意假设, 推导出每个电子态占据动量空间的体积, 进而计算出电子态密度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先是一个基本公式

n=\int_{E_c}^{E_{top}}n(E) dE=\int_{E_c}^{E_{top}}N(E)F(E) dE

其中N(E)称为电子态密度

F(E)费米狄拉克分布

电子态密度可以理解空教室里的座位数,分布函数可以理解为同学坐在位置上的概率

大家结合起来,就可以发现这个就是电子的密度函数


电子态密度的计算 

首先我们把空间映射到动量空间

我们下面来证明每一个电子态占据动量空间的体积

考虑到一个长度为L的半导体带

电子也是物质波,因为波不能消失,所以\frac{L}{\lambda}=n_x

有根据德布罗意假设,我们知道 \lambda=\frac{h}{P_x}

 所以我们知道LP_x=hn_x

因为考虑一个电子态,所以我们有LdP_x=h

我们考虑单位长度的L

所以dP_x=h

故而我们有dP_xdP_ydP_z=h^3

所以每一个电子态占据的动量空间体积h^3

 我们用球壳模型来进行计算

N(E)d(E)=2\frac{(4 \pi p^2dp)}{h^3}=8 \pi p (pdp)/h^3

因为球面的微元是4 \pi p^2 dp,因为每一个电子态有自旋相反的两个电子

又因为E=\frac{p^2}{2m_n},p=\sqrt{2m_nE}

dE=\frac{pdp}{m_n}

N(E)dE= 8 \pi \sqrt{2m_nE}(m_ndE)/h^3 =4 \pi (\frac{2m_n}{h^2})^{\frac{3}{2}}\sqrt{E}dE

所以N(E)=4 \pi (\frac{2m_n}{h^2})^{\frac{3}{2}}\sqrt{E}

我们可以画出图像

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值