经典动态规化题目 最长递增子序列(LCS)详解

题目描述

给定一个序列 An = a1 ,a2 ,  ... , an ,找出最长的子序列使得对所有 i < j ,ai < aj 。求出这个子序列的长度

输入描述:

输入的序列

输出描述:

最长递增子序列的长度

示例1

输入

1 -1 2 -2 3 -3 4

输出

4

说明

 

这是经典的动态规化

arr = input().split()
arr = list(map(int, arr))
n = len(arr)
dp = [0 for i in range(n+1)]
# dp[i] 表示以i结尾的最长子列的长度
# dp[i] = max(dp[j])+1 if arr[i]>arr[j]  j<i
dp[0] = 1
for i in range(1, n):
    for j in range(0, i):
        if arr[i] > arr[j]:
            dp[i] = max(dp[j] + 1, dp[i])

res = 0
for i in range(n):
    res = max(res, dp[i])
print(res)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值