最长公共子序列(LCS)与最长递增子序列(LIS)

1 篇文章 0 订阅

最长公共子序列(LCS)与最长递增子序列(LIS)

最长公共子序列(LCS)
问题描述:
已知两个序列 x 1 , x 2 , . . . x n {x_1,x_2,...x_n} x1,x2,...xn y 1 , y 2 , . . . y m {y_1,y_2,...y_m} y1,y2,...ym求出它们最长的公共子序列,即max{k},满足:
a 1 < a 2 < . . . < a k b 1 < b 2 < . . . < b k x a i = y b i ∀ 1 ≤ i ≤ k a_1 <a_2<...<a_k\\b_1 < b_2< ... <b_k \\ x_{a_i} = y_{b_i} \forall 1 \leq i \leq k a1<a2<...<akb1<b2<...<bkxai=ybi1ik
问题分析:
考虑最长公共子序列的最后一个元素,设为c,如果 x n = y m x_n=y_m xn=ym,说明两个序列的LCS最后一个元素为 x n , y m x_n,y_m xnym,不然, c ≠ x n c \neq x_n c=xn,则可以在LCS后面补上 x n = y m x_n=y_m xn=ym,则与子序列的最长矛盾,所以子序列结尾一定是 x n = y m x_n=y_m xn=ym
如果 x n ≠ y m x_n \neq y_m xn=ym,则要么 c ≠ y m c\neq y_m c=ym,要么 c ≠ x n c\neq x_n c=xn,此时,可以将问题缩小为:求序列 x 1 , x 2 , . . . x n − 1 {x_1,x_2,...x_{n-1}} x1,x2,...xn1 y 1 , y 2 , . . . y m {y_1,y_2,...y_m} y1,y2,...ym的LCS,求序列 x 1 , x 2 , . . . x n {x_1,x_2,...x_n} x1,x2,...xn y 1 , y 2 , . . . y m − 1 {y_1,y_2,...y_{m-1}} y1,y2,...ym1的LCS,并取两者中较长的。
这样的话,对于LCS最后一个元素所有可能的取值情况都讨论了,并都给出了相应缩小问题的方法。
设w[i][j]存放的是 x 1 . . . x i x_1...x_i x1...xi y 1 . . . y j y_1...y_j y1...yj的LCS长度,则有:
w [ i ] [ j ] = { 0 i = 0 ∣ ∣ j = 0 w [ i − 1 ] [ j − 1 ] + 1 i , j > 0 & & x i = y j m a x ( w [ i ] [ j − 1 ] , w [ i − 1 ] [ j ] ) i , j > 0 & & x i ≠ y j w[i][j]=\left\{ \begin{aligned} & 0 &i=0||j=0\\ & w[i-1][j-1]+1 & i,j >0\&\&x_i = y_j\\ & max(w[i][j-1],w[i-1][j]) & i,j>0\&\&x_i \neq y_j \end{aligned} \right. w[i][j]=0w[i1][j1]+1max(w[i][j1],w[i1][j])i=0j=0i,j>0&&xi=yji,j>0&&xi=yj
算法时间复杂度O(mn)

最长递增子序列(LIS)
问题描述:
求一个n个数的序列的最长单调递增子序列
问题分析:
(1)
利用上面的结论可以比较方便的得出LIS的算法:
先用O(nlgn)的排序算法对输入做升序排列,再利用LCS算法求排完序的序列与原序列的最长公共子序列,时间复杂度 O ( n 2 ) O(n^2) O(n2)
(2)
设n个数为 x [ 1 ] , . . . x [ n ] x[1],...x[n] x[1],...x[n],设w[i]表示以 x [ i ] x[i] x[i]为结尾的LIS。初始情况:显然,w[1]=x[i]。递推部分:如果已经求得w[k],则对于w[k+1]来说,如果x[k+1]比之前所有元素都小,则w[k+1]=1,LIS就是本身;如果x[1]到x[k]中有比x[k+1]小的,例如x[j],说明以x[j]为结尾的LIS可以继续延伸到x[k+1],则w[k+1]=w[j]+1,显然,w[k+1]应该取所有可能延伸情况中最大的。综上,w[i]的递推公式如下:
w [ i ] = { 1 i = 1 m a x { w [ j ] + 1 } , ∀ x [ j ] ≤ x [ i ] a n d j < i w[i]=\left\{ \begin{aligned} & 1 &i=1\\ & max\{w[j]+1\},&\forall x[j] \leq x[i]andj < i\\ \end{aligned} \right. w[i]={1max{w[j]+1},i=1x[j]x[i]andj<i
因为整个序列的LIS可能以序列中任意一个元素结尾,所以整个序列的LIS要取w数组的最大值:
m a x { w [ i ] } , 1 ≤ i ≤ n max\{ w[i]\},1\leq i \leq n max{w[i]},1in
上述算法有n个w需要计算,每次计算时最多遍历一遍w数组,所以时间复杂度为 O ( n 2 ) O(n^2) O(n2)
(3)
这里还有一个O(nlgn)的算法。
设n个数为 x [ 1 ] , . . . x [ n ] x[1],...x[n] x[1],...x[n],设w[i]表示整个序列中所有长度为i的递增子序列中末尾元素的最小值。则有
w [ i ] < = w [ i + 1 ] w[i]<=w[i+1] w[i]<=w[i+1]
这很容易理解,因为假设有一条长度为i+1的链末尾元素是w[i+1],前i个元素恰好可以构成一条长度为i的链,设最后一个元素为c,则有 c ≤ w [ i + 1 ] c\leq w[i+1] cw[i+1],因为是一条递增链,而w[i]是长度为i的递增子序列中末尾元素的最小值,所以有 w [ i ] ≤ c w[i]\leq c w[i]c,即 w [ i ] < = w [ i + 1 ] w[i]<=w[i+1] w[i]<=w[i+1]
对于从序列中按顺序读取的一个新元素x[k],可以做如下更新:
1、如果 x [ k ] ≥ w [ l e n ] x[k] \geq w[len] x[k]w[len],则表明x[k]可以加到当前长度为len的LIS后面,即LIS长度加一,len++,w[len] = x[k]
2、如果 x [ k ] < w [ l e n ] x[k] < w[len] x[k]<w[len],则可以通过二分查找,在w中找到x[k]的位置,(前面已经说明了w是一个不减的数组),假设x[k]的位置为:
w [ j ] ≤ x [ k ] ≤ w [ j + 1 ] w[j]\leq x[k] \leq w[j+1] w[j]x[k]w[j+1],则表明长度为j+1的LIS的最小元素可以更新为x[k]。
我们可以证明上述更新可以维护下面的循环不变式:
1、假设处理完了前k个元素,则len中记录了前k个元素中的LIS长度;
2、w[1]至w[len]中记录了长度1至len的递增子序列中末尾元素的最小值。
证明:
初始时,第一个元素,w[1]=x[1]; len = 1;
从第二个元素x[2]到最后x[n]:
如果读取完第k-1个元素满足循环不变式,LIS长度为len,则对于新读取的第k个元素:
如果执行操作1,则规则1仍然满足,因为假设LIS长度更长为len+2,则未读取第k个元素时长度至少为len+1,矛盾。规则2显然满足
如果执行操作2,则LIS长度不可能增加,如果增加则最后一个元素必为x[k],但是长度为len的链的最末元素w[len]>x[k],矛盾,所以规则1依然成立。规则2通过操作2维护了,所以也成立。
综上,更新到最后一步时len即为LIS的长度。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值