大数之m 的 n 次方

本文介绍了一种用于计算大数的幂运算的算法实现。该算法适用于当幂运算的结果非常大,例如达到10000位数时的情况。通过使用数组来存储中间结果,并逐步迭代计算,该算法能够有效地处理超出常规整型变量范围的大数运算。
摘要由CSDN通过智能技术生成

大数之m的n次方

说明:该算法不是个最好的算法,在m的n次方很大时,比如结果为10000位数,时间有点长

代码如下:

# include<stdio.h>
int main() {
int t;
int n,m;
while(t--)
scanf("%d",&t); //测试组数 {
int a[65]={0};
scanf("%d%d",&m,&n); //表示m的n次方 a[0]=1;
int k=0;
for(int i=1;i<=n;i++)
{
{
for(int j=0;j<65;j++)
int r=a[j]*m+k; a[j]= r%10; k=r/10; } } int i;
for(i;i>=0;i--) //输出结果(逆序输出)
for( i=64;i>=0;i--)
{
if(a[i]!=0)
break;
printf("%d",a[i]);
}
}
printf("\n"); }
return 0;





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值