前缀式计算
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
先说明一下什么是中缀式:
如2+(3+4)*5这种我们最常见的式子就是中缀式。
而把中缀式按运算顺序加上括号就是:(2+((3+4)*5))
然后把运算符写到括号前面就是+(2 *( +(3 4) 5) )
把括号去掉就是:+ 2 * + 3 4 5
最后这个式子就是该表达式的前缀表示。
给你一个前缀表达式,请你计算出该前缀式的值。
比如:
+ 2 * + 3 4 5的值就是 37
-
输入
-
有多组测试数据,每组测试数据占一行,任意两个操作符之间,任意两个操作数之间,操作数与操作符之间都有一个空格。输入的两个操作数可能是小数,数据保证输入的数都是正数,并且都小于10,操作数数目不超过500。
以EOF为输入结束的标志。
输出
- 对每组数据,输出该前缀表达式的值。输出结果保留两位小数。 样例输入
-
+ 2 * + 3 4 5 + 5.1 / 3 7
样例输出
-
37.00 5.53
解题思路:相比与中缀式,前缀式计算比较简单
如:+ 2 * + 3 4 5,
从后往前看,依次是5 4 3,将其入栈,每当碰到运算符就计算,然后保存,
(3+4)=7,7入栈,3,4出栈,现在栈中有5 7 ,
再计算(7*5)7,5,出栈,35入栈,现在栈中有 35 ,
2 入栈,栈有 35 2 ,再计算35+2=37 得到结果
代码如下:
# include<stdio.h>
# include<stdlib.h>
# include<string.h>
# include<stack>
# include<iostream>
using namespace std;
double W(double x,double y,char c) //计算
{
if(c=='+')
return x+y;
else if(c=='-')
return x-y;
else if(c=='*')
return x*y;
else if(c=='/')
return x/y;
}
char a[1000];
int main(){
while(gets(a)!=NULL)
{
int i=strlen(a)-1,j; //从后往前计算
stack<double>s1;
double sum=0;
while(i>=0)
{
if(a[i]>='0'&&a[i]<='9')
{
while(a[i]!=' '&&i>=0) // i>=0 防止越界
i--;
s1.push(atof(&a[i]));
}
else if(a[i]!=' '&&s1.size()>=2) { // s1.size()>=2 防止越界
double c1=s1.top();
s1.pop();
double c2=s1.top();
s1.pop();
s1.push(W(c1,c2,a[i]));
i--;
}
else i--;
}
printf("%.2f\n",s1.top());
}
return 0;
}