前缀式计算

前缀式计算

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述

先说明一下什么是中缀式:

如2+(3+4)*5这种我们最常见的式子就是中缀式。

而把中缀式按运算顺序加上括号就是:(2+((3+4)*5))

然后把运算符写到括号前面就是+(2 *( +(3 4) 5) )

把括号去掉就是:+ 2 * + 3 4 5

最后这个式子就是该表达式的前缀表示。

给你一个前缀表达式,请你计算出该前缀式的值。

比如:

+ 2 * + 3 4 5的值就是 37

输入
有多组测试数据,每组测试数据占一行,任意两个操作符之间,任意两个操作数之间,操作数与操作符之间都有一个空格。输入的两个操作数可能是小数,数据保证输入的数都是正数,并且都小于10,操作数数目不超过500。
以EOF为输入结束的标志。
输出
对每组数据,输出该前缀表达式的值。输出结果保留两位小数。
样例输入
+ 2 * + 3 4 5
+ 5.1 / 3 7
样例输出
37.00
5.53

解题思路:相比与中缀式,前缀式计算比较简单

如:+ 2 * + 3 4 5,

从后往前看,依次是5 4 3,将其入栈,每当碰到运算符就计算,然后保存,

(3+4)=7,7入栈,3,4出栈,现在栈中有5 7 ,

再计算(7*5)7,5,出栈,35入栈,现在栈中有 35 ,

2 入栈,栈有 35 2 ,再计算35+2=37  得到结果

代码如下:

# include<stdio.h>
# include<stdlib.h>
# include<string.h>
# include<stack>
# include<iostream>
using namespace std;
double W(double x,double y,char c)  //计算 
{
	if(c=='+')
	return x+y;
	else if(c=='-')
	return x-y;
	else if(c=='*')
	return x*y;
	else if(c=='/')
	return x/y;
}
	char a[1000];
int main(){
	while(gets(a)!=NULL)
	{ 
	 int i=strlen(a)-1,j;   //从后往前计算 
	stack<double>s1;
	double sum=0;
	while(i>=0) 
	{
		if(a[i]>='0'&&a[i]<='9')
		{
			while(a[i]!=' '&&i>=0)  // i>=0 防止越界 
			i--;
			s1.push(atof(&a[i]));
			
		}
		else if(a[i]!=' '&&s1.size()>=2) {   // s1.size()>=2 防止越界 
			double c1=s1.top();
			s1.pop();
			double c2=s1.top();
			s1.pop();
			s1.push(W(c1,c2,a[i]));	
			i--;		
		}		
		else i--;
		
	}
		
printf("%.2f\n",s1.top());

	}
	return 0;
}
                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值