2个用到数学归纳法的有意思的证明

    数学归纳法是一种很有效的证明方法,同时,在很多时候它也能证明一些很有意思的问题,下面我们来看两个有趣的例子:

 

问题1:我们如何证明一个由2n × 2n个小方格组成的正方形,在放上一个小方块0.jpg后,剩下的格子总能用1.jpg1b.jpg1d.jpg1c.jpg这四种方块无重叠且无间隙的覆盖?

 

证明:

n = 0时,总的方块是一个1×1的方格,在任意放上一个小方块0.jpg后,方格已经填满。我们可以把这作为归纳的起点,但是为了方便大家理解,我顺带解释一下n = 1时的情况。

 

n = 1 时,总的方块是2 × 2的,在放上一个方块后,由于对称性,我们不妨假设在左上角放了一个0.jpg

    现在方块是2a.jpg的,左上角红色的为已经放置的,白色的方块为需要继续覆盖的,那么显然,我们用一个1.jpg,就可以将剩余的方块覆盖,最后结果是2.jpg当第一个放上的0.jpg在其它位置,如放在右上角时,我们可以用1b.jpg来覆盖,其它的位置结论也类似。

 

我们假设,当n = k时结论成立,也就是说,任意一个2k × 2k 的方块,在任意一地方放上一方块后,剩下的格子总能有形如1.jpg4种方块覆盖。

 

n = k + 1时,一个2k+1 × 2k+1 的方块,可以看作是42k × 2k的方块,由于对称性,我们不妨假设我们在左上角的那个2k × 2k的方块里放了一个方格,就像这样

4a.jpg

方块1是一个已经放上了一个方块的2k × 2k的方块,由归纳假设可以知道,方块1是可以被形如1.jpg4种方块覆盖的,接下来我们在4个方块的交界处放一个1.jpg方块,结果如下:

4.jpg

现在方块234也都是一个已经放上了一个方块的2k × 2k的方格,由归纳假设可以知道,它们也都可被形如1.jpg4种方块覆盖。所以一个2k+1 × 2k+1 的方格在任意放上一个方块后,剩下的部分是可以被形如1.jpg4种方块无重叠和间隙的覆盖的。当最初的0.jpg放在23或者4区域时,我们分别用1b.jpg1c.jpg或者1d.jpg放在交界处,也可以得出和上面一样的结论

 

综上,对于一切的自然数n,结论都成立。一个由2n × 2n个小方格组成的正方形,在放上一个小方块0.jpg后,剩下的格子总能用1.jpg1b.jpg1d.jpg1c.jpg这四种方块无重叠且无间隙的覆盖

 

 

 

问题2这个问题有很多描述的版本,第一次是在《推理的迷宫:悖论谜题及知识的脆弱性(盗火者译丛)里看到的,那时作者用失业来描述这个问题,后来有一天又在《数学家妙谈股市》(http://www.douban.com/review/2269082/)里看到这个问题,只是换了一种更表达方式,现在我沿用后者的方法来描述这个问题。

 

     保罗斯写这个寓言是在199710月股市大跌的一个星期之后。它发生在一个地点不明的愚昧的大女子主义村子里。在这个村子里,有50对夫妇,每个女人在别人的丈夫对妻子不忠实时会立即知道,但从来不知道自己的丈夫是否忠实。该村严格的大女子主义章程要求,如果一个女人能够证明她的丈夫不忠实,她必须在当天杀死他。又假定女人们都赞同这一章程,并且都很聪明,也都能意识到别的女人的聪明;同时,还都很仁慈,即她们从不向那些丈夫不忠实的女人通风报信。

 

    假定在这个村子里发生了这样的事:所有这50个男人都不忠实,但没有哪一个女人能够证明她的丈夫的不忠实,以至这个村子能够快活而又小心翼翼地一如既往。 

 

    有一天早晨,森林的远处有一位德高望重的女族长来拜访。她的诚实众所周知,她的话就像法律。她暗中警告说村子里至少有一个风流的丈夫。这个事实,根据她们已经知道的,只该有微不足道的后果,但是一旦这个事实成为公共知识,会发生什么?

 

    结论是,前49天,村子里什么事都不会发生,到了第50天,所有不忠的丈夫将被他们的妻子杀死,为什么呢?我们用数学归纳法加以证明。设发生过不忠行为的男人数为n

 

n = 1时,除了那个不忠的丈夫的妻子,我们叫她A,其她的妻子都知道有一个男的不忠,一旦女族长到来宣布有男人不忠后,第一天,A知道了有一个男人是不忠的,而之前她却不知道是谁,因此唯一的可能就是她自己的丈夫不忠,因此她会把自己的丈夫杀死。而其她的妻子,由于她们已经知道A的丈夫不忠了,所以当听到女族长的消息时,不能确定自己的丈夫是否不忠,而一旦看到A杀了自己的丈夫后,她们就知道自己的丈夫是忠实的,因为如果自己的丈夫不忠,A就知道有一个男人不忠,因此就不会杀她的丈夫。所以第一天过后,其她的妻子都知道自己的丈夫是忠诚的。

 

    类似之前的问题1,我们可以把这当作归纳的基础,但是为了方便大家理解,我还是叙述一下n = 2时的情况。

 

n = 2时,有2个妻子的丈夫不忠,我们不妨叫她们ABA知道B的丈夫不忠,B也知道A的丈夫不忠。第一里,A由于知道了B的丈夫是不忠的,因此她不能确定自己的丈夫不忠了,B也一样,所以第一天是平安的一天。可是到了第二天,A会想如果我自己的丈夫是忠实的话,B的丈夫就是唯一一个不忠的丈夫,那么根据n = 1时的情况,B昨天应该会把她的丈夫杀死,可以B却没有,因此我自己的丈夫也是不忠的。所以A会在第二天把自己的丈夫杀死,同样的,B的想法和A的也一样,也会在第二天把自己的丈夫杀死。

 

那么我们假设,当n = k时(k >= 1),前k-1天都是一个平安的夜晚,第k天所有不忠的丈夫的妻子都会把他们杀死。

 

n = k+1时,任意一个不忠的丈夫的妻子(仍然把其中一个叫作A)都知道有k个男人是不忠的,那么她应该知道,如果自己的丈夫是忠诚的,整个村子就只有k个不忠的男人,这样在第k天时,应该有k个男人被杀死,在前k天她是不会做什么的,可是到了第k天结束,她都没看到有男人被杀死,因此在第k+1天,她知道肯定是自己的丈夫不忠了,因此会把她杀死,其她的有着不忠丈夫的妻子也有这相同的想法,都会在前k天没有行动,而在第k+1天杀死自己的丈夫。所以n = k+1时结论成立。

 

    通过了数学归纳法,我们证明了当这样的一个村子有n个男人不忠时,前n-1天他们都相安无事,而到第n天将会一起被杀死。

 

    以下是关于这个故事的一些讨论,和数学的关系不是太大。保罗斯写这一个故事是为了说明共有知识的作用, 如果我们把森林远处来的女族长的警告代替为对去年(1997)夏天泰国、马来西亚和其他亚洲国家的通货问题的警告;妻子们的紧张和不安代替为投资者的紧张和不安;妻子们只要自己的公牛没有被刺伤就心满意足代替为投资者们只要自己的公牛没有被刺伤就心满意足;杀丈夫代替为抛股票;警告和杀戮之间的50天间隔代替为东亚问题和大崩盘之间的延迟,我们就会得到这次大崩盘的成因。 对这内容感兴趣的读者可以去读下《数学家妙谈股市》(http://www.douban.com/review/2269082/)。

 

    这个故事中女族长的地位是很有意思的,如果没有她的一句话,哪怕大家都知道有不忠的男人,屠杀仍然不会开始,因为大家没有一个共有的知识。所以她的作用就类似于数学归纳法中n = 1的证明起到的根基作用。我们假设在没有人不忠的时候,女族长却辜负大家信赖的发出了一个假的警告,这时会发生什么呢?

结论是,由于每一个妻子都不知道有不忠的人,因此会马上把自己的丈夫杀死。这是一个相当可怕的的结果。

 

    我们再假设一下,当只有一个丈夫的妻子不忠的时候,她的妻子因为舍不得而没杀她的丈夫,结果是怎么样的呢?结论是,到了第二天,其她的妻子看到第一天没人死被杀死,而自己却只知道有一个丈夫不忠,所以她们会进入n = 2 的情景,在第二天都把自己的丈夫杀死了。

 

    所以可以看到,这样一个大女子主义的村子还是相当的危险的,另外关于女子主义发现的一个有意思的问题是,或许因为美国女权运动比较兴旺,许多数学家在举例子的时候,往往都只能用女子主义的观点来举。本文中的故事是一个例子,我们可以想象要是把妻子杀丈夫换作是男人杀妻子不知道会引来什么样的批评,另一个有趣的例子是在讲述“延迟认可算法”时,将一种n个男性和n个女性互动寻找配偶的方法描述成女性占优的,这算法比较有意思,我会在以后的文章中介绍一下。

 

 

    最后让我们回到数学。我还注意到,数学归纳法还有一个和其它证明方法不同的性质,对许多证明方法来说,一般要证明的命题结论越强,证明过程的难度也就越大。而对数学归纳法来说,如果要证明的命题结论比较强,也就意味着你通过归纳假设可以得到一个比较强的对于n = k时成立的条件,所以有时后会出现,用数学归纳法证明一个较强的命题比证明一个较弱的命题还容易的情况,我有一两个这样的例子,将在今后的文章中写出来和大家分享。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值