人工智能时代都需要哪些数学知识?这些经典教材给你划重点

本文推荐了一系列经典数学书籍,适合于学习人工智能、机器学习和数据挖掘等领域的读者。其中包括线性代数、概率论、数值分析、矩阵理论、概率与计算、代数、数学建模、实分析、图论、凸优化和统计学等方面的内容,旨在帮助读者打好数学基础,为深入学习AI技术做好准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读:人工智能之父图灵,在剑桥学习的专业就是数学。几十年来,不管人工智能经历多少次热潮和低谷,数学一直都是这个领域坚实的基础。

无论是关于自然界和人类社会的科学探索,还是关于工程技术的研究开发,都离不开对相关问题进行数学方面的定量表示和分析,数学是一切科学的基础,是推动科技创新、发展高新技术产业的基石。数学理论和数学思维的重要性是毋庸置疑的。

所以,数学一定是你绕不开的重点。开学季,数据叔送上经典数学书单推荐,助你打好数学基础……(偷偷告诉你,这些书在京东正限时5折)

1

线性代数及其应用

(原书第5版)

作者:戴维 C.雷 史蒂文 R.雷

推荐语:本书是一本优秀的线代教材,给出线性代数基本介绍和一些有趣应用,目的是帮助读者掌握线性代数的基本概念及应用技巧,为后续课程的学习和工作实践奠定基础。

2

概率论基础教程

(原书第9版)

作者:Sheldon M. Ross

推荐语:本书是经过锤炼的优秀教材,已在世界范围内畅销三十多年。在美国的概率论教材中,本书占有50%以上的市场,被华盛顿大学、斯坦福大学、普度大学、密歇根大学、约翰霍普金斯大学、得克萨斯大学等众多名校采用

国内很多高校也采用这本书作为教材或参考书,如北京大学、清华大学、华东师范大学、浙江大学、武汉大学、中央财经大学和上海财经大学等。书中通过大量的例子系统介绍了概率论的基础知识及其广泛应用,内容涉及组合分析、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等。

3

数值分析

(原书第2版)

作者:Timothy Sauer

推荐语:本书是一本优秀的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。

每章的“事实验证”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的MATLAB实现代码,并且每章都配有大量难度适宜的习题和编程问题,便于读者学习、巩固和提高。

本书内容生动新颖,讲解细致,实用性强,受到广泛好评,被美国多所大学采纳为教材或指定为参考书。

4

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值