代码随想录算法训练营第16天|104.二叉树的最大深度、111.二叉树的最小深度、 222.完全二叉树的节点个数

104.二叉树的最大深度

题目链接:104.二叉树的最大深度
文章讲解:代码随想录|104.二叉树的最大深度
视频讲解:二叉树的高度和深度有啥区别?究竟用什么遍历顺序?很多录友搞不懂 | LeetCode:104.二叉树的最大深度

思路

求最大深度,也就试求根节点到最远叶子结点的路径上的节点数
每个节点的最大深度都是其子节点的最大深度+1,因此可以用递归的思想,终止条件是遇到叶子结点返回0(叶子结点的深度为0)。这里是将子节点的信息提供给父节点,所以是后序遍历(左右中)

代码

lass solution {
public:
    int getdepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftdepth = getdepth(node->left);       // 左
        int rightdepth = getdepth(node->right);     // 右
        int depth = 1 + max(leftdepth, rightdepth); // 中
        return depth;
    }
    int maxDepth(TreeNode* root) {
        return getdepth(root);
    }
};

111. 二叉树的最小深度

题目链接:二叉树的最小深度
文章讲解:代码随想录|111. 二叉树的最小深度
视频讲解:看起来好像做过,一写就错! | LeetCode:111.二叉树的最小深度

思路

最小深度:从根节点到最近叶子结点的最短路径上的节点数量
跟上一题类似,每个节点的最小深度都是其子节点的最小深度+1,因此可以用递归的方法进行后序遍历
但需要注意的是,如果一个节点的子节点一个为空另一个非空,其最小深度则会判定为0,这是错误的(而它并不是叶子结点),所以要做额外的判断
请添加图片描述

代码

class Solution {
public:
    int getDepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftDepth = getDepth(node->left);           // 左
        int rightDepth = getDepth(node->right);         // 右
                                                        // 中
        // 当一个左子树为空,右不为空,这时并不是最低点
        if (node->left == NULL && node->right != NULL) { 
            return 1 + rightDepth;
        }   
        // 当一个右子树为空,左不为空,这时并不是最低点
        if (node->left != NULL && node->right == NULL) { 
            return 1 + leftDepth;
        }
        int result = 1 + min(leftDepth, rightDepth);
        return result;
    }

    int minDepth(TreeNode* root) {
        return getDepth(root);
    }
};

222.完全二叉树的节点个数

题目链接:完全二叉树的节点个数
文章讲解:代码随想录|完全二叉树的节点个数
视频讲解:要理解普通二叉树和完全二叉树的区别! | LeetCode:222.完全二叉树节点的数量

思路

此题可以当做普通二叉树用递归法或迭代法(层序遍历)来做,但是就没有用到完全二叉树的性质了。
其实在后序遍历的迭代法中,我们可以判断如果子树为满二叉树,则可以直接用公式2h-1来计算。
请添加图片描述

在判断是否为满二叉树的时候,就用到了完全二叉树的性质。我们从这个子树的根节点出发,一直左走计算深度,再一直往右走计算深度,如果两边的深度相等,那么根据完全二叉树的性质,则可以判定此二叉树为满二叉树
请添加图片描述

代码

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left) {  // 求左子树深度
            left = left->left;
            leftDepth++;
        }
        while (right) { // 求右子树深度
            right = right->right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值