104.二叉树的最大深度
题目链接:104.二叉树的最大深度
文章讲解:代码随想录|104.二叉树的最大深度
视频讲解:二叉树的高度和深度有啥区别?究竟用什么遍历顺序?很多录友搞不懂 | LeetCode:104.二叉树的最大深度
思路
求最大深度,也就试求根节点到最远叶子结点的路径上的节点数
每个节点的最大深度都是其子节点的最大深度+1,因此可以用递归的思想,终止条件是遇到叶子结点返回0(叶子结点的深度为0)。这里是将子节点的信息提供给父节点,所以是后序遍历(左右中)
代码
lass solution {
public:
int getdepth(TreeNode* node) {
if (node == NULL) return 0;
int leftdepth = getdepth(node->left); // 左
int rightdepth = getdepth(node->right); // 右
int depth = 1 + max(leftdepth, rightdepth); // 中
return depth;
}
int maxDepth(TreeNode* root) {
return getdepth(root);
}
};
111. 二叉树的最小深度
题目链接:二叉树的最小深度
文章讲解:代码随想录|111. 二叉树的最小深度
视频讲解:看起来好像做过,一写就错! | LeetCode:111.二叉树的最小深度
思路
最小深度:从根节点到最近叶子结点的最短路径上的节点数量
跟上一题类似,每个节点的最小深度都是其子节点的最小深度+1,因此可以用递归的方法进行后序遍历
但需要注意的是,如果一个节点的子节点一个为空另一个非空,其最小深度则会判定为0,这是错误的(而它并不是叶子结点),所以要做额外的判断
代码
class Solution {
public:
int getDepth(TreeNode* node) {
if (node == NULL) return 0;
int leftDepth = getDepth(node->left); // 左
int rightDepth = getDepth(node->right); // 右
// 中
// 当一个左子树为空,右不为空,这时并不是最低点
if (node->left == NULL && node->right != NULL) {
return 1 + rightDepth;
}
// 当一个右子树为空,左不为空,这时并不是最低点
if (node->left != NULL && node->right == NULL) {
return 1 + leftDepth;
}
int result = 1 + min(leftDepth, rightDepth);
return result;
}
int minDepth(TreeNode* root) {
return getDepth(root);
}
};
222.完全二叉树的节点个数
题目链接:完全二叉树的节点个数
文章讲解:代码随想录|完全二叉树的节点个数
视频讲解:要理解普通二叉树和完全二叉树的区别! | LeetCode:222.完全二叉树节点的数量
思路
此题可以当做普通二叉树用递归法或迭代法(层序遍历)来做,但是就没有用到完全二叉树的性质了。
其实在后序遍历的迭代法中,我们可以判断如果子树为满二叉树,则可以直接用公式2h-1来计算。
在判断是否为满二叉树的时候,就用到了完全二叉树的性质。我们从这个子树的根节点出发,一直左走计算深度,再一直往右走计算深度,如果两边的深度相等,那么根据完全二叉树的性质,则可以判定此二叉树为满二叉树
代码
class Solution {
public:
int countNodes(TreeNode* root) {
if (root == nullptr) return 0;
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) { // 求左子树深度
left = left->left;
leftDepth++;
}
while (right) { // 求右子树深度
right = right->right;
rightDepth++;
}
if (leftDepth == rightDepth) {
return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
}
return countNodes(root->left) + countNodes(root->right) + 1;
}
};