代码随想录算法训练营第17天|110.平衡二叉树、257. 二叉树的所有路径、404.左叶子之和

110.平衡二叉树

题目链接:110.平衡二叉树
文章讲解:代码随想录|110.平衡二叉树
视频讲解:110.平衡二叉树

思路

平衡二叉树:一个二叉树每个节点的左右子树的高度差不超过1
运用求高度的后序遍历递归法,在每一次递归求得的左右子树高度后,加一个判断,如果高度差超过1则返回-1,并直接在每次递归时一个一个传到根节点

代码

class Solution {
public:
    // 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1
    int getHeight(TreeNode* node) {
        if (node == NULL) {
            return 0;
        }
        
        int leftHeight = getHeight(node->left);
        if (leftHeight == -1) return -1;
        int rightHeight = getHeight(node->right);
        if (rightHeight == -1) return -1;
        
        int result;
		if (abs(leftHeight - rightHeight) > 1) {  // 中
    		result = -1;
		} else {
	    	result = 1 + max(leftHeight, rightHeight); // 以当前节点为根节点的树的最大高度
		}
		return result;
    }
    bool isBalanced(TreeNode* root) {
        return getHeight(root) == -1 ? false : true;
    }
};

我的代码(递归嵌套递归):

class Solution {
public:
    int getHeight(TreeNode* node){
        if(node == nullptr) return 0;
        int leftHeight = getHeight(node->left);
        int righeHeight = getHeight(node->right);
        int height = max(leftHeight, righeHeight) + 1;
        return height;
    }
    bool isBalanced(TreeNode* root) {
        if(root == nullptr) return true;
        if(!isBalanced(root->left)||!isBalanced(root->right))return false;
        bool result = abs(getHeight(root->left)-getHeight(root->right))<=1;
        return result;
    }
};

257. 二叉树的所有路径

题目链接:257. 二叉树的所有路径
文章讲解:代码随想录|257. 二叉树的所有路径
视频讲解:递归中带着回溯,你感受到了没?| LeetCode:257. 二叉树的所有路径

思路

因为是从根节点出发,所以用前序遍历(中左右)
本题需要输出每一条路径,创建一个vector存放遍历的节点,并在vector中模仿递归本来就存在的回溯
在这里插入图片描述

代码

// 版本一
class Solution {
private:

    void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
        path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中 
        // 这才到了叶子节点
        if (cur->left == NULL && cur->right == NULL) {
            string sPath;
            for (int i = 0; i < path.size() - 1; i++) {
                sPath += to_string(path[i]);
                sPath += "->";
            }
            sPath += to_string(path[path.size() - 1]);
            result.push_back(sPath);
            return;
        }
        if (cur->left) { // 左 
            traversal(cur->left, path, result);
            path.pop_back(); // 回溯
        }
        if (cur->right) { // 右
            traversal(cur->right, path, result);
            path.pop_back(); // 回溯
        }
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        vector<int> path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;
    }
};

版本二(待理解)

//版本二
class Solution {
private:
    void traversal(TreeNode* cur, string path, vector<string>& result) {
        path += to_string(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中
        if (cur->left == NULL && cur->right == NULL) {
            result.push_back(path);
            return;
        }
        if (cur->left) {
            path += "->";
            traversal(cur->left, path, result); // 左
            path.pop_back(); // 回溯 '>'
            path.pop_back(); // 回溯 '-'
        }
        if (cur->right) {
            path += "->";
            traversal(cur->right, path, result); // 右
            path.pop_back(); // 回溯'>'
            path.pop_back(); // 回溯 '-'
        }
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        string path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;

    }
};

404. 左叶子之和

题目链接:404. 左叶子之和

文章讲解:代码随想录|404. 左叶子之和

视频讲解:二叉树的题目中,总有一些规则让你找不到北 | LeetCode:404.左叶子之和

思路

判断一个节点是不是左叶子,需要用其父节点来判断,因此cur应该指向父节点,每个父节点获得左节点的左叶子和+右节点的左叶子和,如果左子节点就是左叶子则父节点获得左子节点值+右节点的左叶子和

代码

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right== NULL) return 0;

        int leftValue = sumOfLeftLeaves(root->left);    // 左
        if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况
            leftValue = root->left->val;
        }
        int rightValue = sumOfLeftLeaves(root->right);  // 右

        int sum = leftValue + rightValue;               // 中
        return sum;
    }
};

今日收获

二刷时要会写257. 二叉树的所有路径的简化版本!
在写递归函数时,首先要想好是用的什么遍历方式,写的过程中要时刻清楚cur是指的哪个节点(父节点or子节点)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值