110.平衡二叉树
题目链接:110.平衡二叉树
文章讲解:代码随想录|110.平衡二叉树
视频讲解:110.平衡二叉树
思路
平衡二叉树:一个二叉树每个节点的左右子树的高度差不超过1
运用求高度的后序遍历递归法,在每一次递归求得的左右子树高度后,加一个判断,如果高度差超过1则返回-1,并直接在每次递归时一个一个传到根节点
代码
class Solution {
public:
// 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1
int getHeight(TreeNode* node) {
if (node == NULL) {
return 0;
}
int leftHeight = getHeight(node->left);
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right);
if (rightHeight == -1) return -1;
int result;
if (abs(leftHeight - rightHeight) > 1) { // 中
result = -1;
} else {
result = 1 + max(leftHeight, rightHeight); // 以当前节点为根节点的树的最大高度
}
return result;
}
bool isBalanced(TreeNode* root) {
return getHeight(root) == -1 ? false : true;
}
};
我的代码(递归嵌套递归):
class Solution {
public:
int getHeight(TreeNode* node){
if(node == nullptr) return 0;
int leftHeight = getHeight(node->left);
int righeHeight = getHeight(node->right);
int height = max(leftHeight, righeHeight) + 1;
return height;
}
bool isBalanced(TreeNode* root) {
if(root == nullptr) return true;
if(!isBalanced(root->left)||!isBalanced(root->right))return false;
bool result = abs(getHeight(root->left)-getHeight(root->right))<=1;
return result;
}
};
257. 二叉树的所有路径
题目链接:257. 二叉树的所有路径
文章讲解:代码随想录|257. 二叉树的所有路径
视频讲解:递归中带着回溯,你感受到了没?| LeetCode:257. 二叉树的所有路径
思路
因为是从根节点出发,所以用前序遍历(中左右)
本题需要输出每一条路径,创建一个vector存放遍历的节点,并在vector中模仿递归本来就存在的回溯
代码
// 版本一
class Solution {
private:
void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中
// 这才到了叶子节点
if (cur->left == NULL && cur->right == NULL) {
string sPath;
for (int i = 0; i < path.size() - 1; i++) {
sPath += to_string(path[i]);
sPath += "->";
}
sPath += to_string(path[path.size() - 1]);
result.push_back(sPath);
return;
}
if (cur->left) { // 左
traversal(cur->left, path, result);
path.pop_back(); // 回溯
}
if (cur->right) { // 右
traversal(cur->right, path, result);
path.pop_back(); // 回溯
}
}
public:
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
vector<int> path;
if (root == NULL) return result;
traversal(root, path, result);
return result;
}
};
版本二(待理解)
//版本二
class Solution {
private:
void traversal(TreeNode* cur, string path, vector<string>& result) {
path += to_string(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中
if (cur->left == NULL && cur->right == NULL) {
result.push_back(path);
return;
}
if (cur->left) {
path += "->";
traversal(cur->left, path, result); // 左
path.pop_back(); // 回溯 '>'
path.pop_back(); // 回溯 '-'
}
if (cur->right) {
path += "->";
traversal(cur->right, path, result); // 右
path.pop_back(); // 回溯'>'
path.pop_back(); // 回溯 '-'
}
}
public:
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
string path;
if (root == NULL) return result;
traversal(root, path, result);
return result;
}
};
404. 左叶子之和
题目链接:404. 左叶子之和
文章讲解:代码随想录|404. 左叶子之和
视频讲解:二叉树的题目中,总有一些规则让你找不到北 | LeetCode:404.左叶子之和
思路
判断一个节点是不是左叶子,需要用其父节点来判断,因此cur应该指向父节点,每个父节点获得左节点的左叶子和+右节点的左叶子和,如果左子节点就是左叶子则父节点获得左子节点值+右节点的左叶子和
代码
class Solution {
public:
int sumOfLeftLeaves(TreeNode* root) {
if (root == NULL) return 0;
if (root->left == NULL && root->right== NULL) return 0;
int leftValue = sumOfLeftLeaves(root->left); // 左
if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况
leftValue = root->left->val;
}
int rightValue = sumOfLeftLeaves(root->right); // 右
int sum = leftValue + rightValue; // 中
return sum;
}
};
今日收获
二刷时要会写257. 二叉树的所有路径的简化版本!
在写递归函数时,首先要想好是用的什么遍历方式,写的过程中要时刻清楚cur是指的哪个节点(父节点or子节点)