1143.最长公共子序列
题目链接:1143.最长公共子序列
文章讲解:代码随想录|1143.最长公共子序列
思路
1.dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
2.如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
3.test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
4.为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。
5.
代码
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
for (int i = 1; i <= text1.size(); i++) {
for (int j = 1; j <= text2.size(); j++) {
if (text1[i - 1] == text2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[text1.size()][text2.size()];
}
};
1035.不相交的线
题目链接:[1035.不相交的线(https://leetcode.cn/problems/uncrossed-lines/description/)
文章讲解:代码随想录|1035.不相交的线
思路
跟1143.最长公共子序列一模一样
代码
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[nums1.size()][nums2.size()];
}
};
53. 最大子序和
题目链接:53. 最大子序和
文章讲解:代码随想录|53. 最大子序和
思路
1.dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
2.dp[i]只有两个方向可以推出来:
dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和
3.dp[0] = nums[0]
4.从前向后
5.注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6],因为在dp[i]是包括下标i之前的最大连续子序列和
代码
class Solution {
public:
int maxSubArray(vector<int>& nums) {
vector<int> dp(nums.size(), 0);
dp[0] = nums[0];
int result = dp[0];
for(int i = 1; i < nums.size(); i++){
dp[i] = max(dp[i - 1] + nums[i], nums[i]);
result = max(dp[i], result);
}
return result;
}
};
result初始化为dp[0]而不是0,因为当nums.size()==1时,无法进入循环