代码随想录算法训练营第56天|1143.最长公共子序列、1035.不相交的线、 53. 最大子序和

1143.最长公共子序列

题目链接:1143.最长公共子序列
文章讲解:代码随想录|1143.最长公共子序列

思路

1.dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
2.如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
3.test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
4.为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。
在这里插入图片描述
5.在这里插入图片描述

代码

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线

题目链接:[1035.不相交的线(https://leetcode.cn/problems/uncrossed-lines/description/)
文章讲解:代码随想录|1035.不相交的线

思路

跟1143.最长公共子序列一模一样

代码

class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        for (int i = 1; i <= nums1.size(); i++) {
            for (int j = 1; j <= nums2.size(); j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[nums1.size()][nums2.size()];
    }
};

53. 最大子序和

题目链接:53. 最大子序和
文章讲解:代码随想录|53. 最大子序和

思路

1.dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
2.dp[i]只有两个方向可以推出来:
dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和
3.dp[0] = nums[0]
4.从前向后
5.注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6],因为在dp[i]是包括下标i之前的最大连续子序列和
在这里插入图片描述

代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        vector<int> dp(nums.size(), 0);
        dp[0] = nums[0];
        int result = dp[0]; 
        for(int i = 1; i < nums.size(); i++){
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
            result = max(dp[i], result);
        }
        return result;
    }
};

result初始化为dp[0]而不是0,因为当nums.size()==1时,无法进入循环

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值