数理统计 —— 总体、样本、统计量及其分布

1. 总体与样本

1.1 总体

  • 研究对象的全体称为总体,组成总体的每一个元素称为个体。在对总体进行统计研究时,我们所关心的是表征总体状况的某个(或某几个)数量指标 X X X(可以是向量)和该指标在总体中的分布情况。
    • 例如:总体是一批灯泡, X X X 是寿命;总体是某市市民, X X X 是收入
  • 我们把总体与随机变量 X X X 等同起来,说 "总体 X X X"。所谓总体的分布就是指随机变量 X X X 的分布

1.2 样本

1.2.1 定义

  • n个相互独立且与总体 X X X 具有相同概率分布的随机变量 X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn 所组成的整体 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn) 称为来自总体 X X X,容量为 n n n 的一个简单随机样本,简称 样本
  • 样本中的每个随机变量都独立同分布于总体 X X X,即 X i ∼ i . i . d X X_i\stackrel{i.i.d}{\sim}X Xii.i.dX
  • 一次抽样结果的n个具体数值 ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn) 称为样本 X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn 的一个 观测值样本值

1.2.2 分布

  • 对于容量为n的样本 X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn,假设总体 X X X 的分布函数为 F ( x ) F(x) F(x),则 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn) 的分布函数为
    F ( x 1 , x 2 , . . . , x n ) = ∏ i = 1 n F ( x i ) F(x_1,x_2,...,x_n) = \prod\limits_{i=1}^n F(x_i) F(x1,x2,...,xn)=i=1nF(xi)
    • X X X为离散型随机变量,概率分布为 p i = P ( X = x i ) p_i = P(X=x_i) pi=P(X=xi),联合分布为
      P { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } = ∏ i = 1 n P { X i = x i } P\{X_1 = x_1,X_2=x_2,...,X_n=x_n\} = \prod\limits_{i=1}^n P\{X_i=x_i\} P{X1=x1,X2=x2,...,Xn=xn}=i=1nP{Xi=xi}
    • X X X为连续型随机变量,概率密度为 f ( x ) f(x) f(x),联合概率密度为
      f ( x 1 , x 2 , . . . , x n ) = ∏ i = 1 n f ( x i ) f(x_1,x_2,...,x_n) = \prod\limits_{i=1}^n f(x_i) f(x1,x2,...,xn)=i=1nf(xi)

2. 统计量及其分布

2.1 统计量

2.1.1 定义

  • X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn 为来自总体 X X X 的一个样本, g ( x 1 , x 2 , . . . , x n ) g(x_1,x_2,...,x_n) g(x1,x2,...,xn) 为n元函数,如果g中不含任何未知参数,则 g ( X 1 , X 2 , . . . , X n ) g(X_1,X_2,...,X_n) g(X1,X2,...,Xn) 为样本 X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn 的一个统计量
  • ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn) 为样本值,则称 g ( x 1 , x 2 , . . . , x n ) g(x_1,x_2,...,x_n) g(x1,x2,...,xn) g ( X 1 , X 2 , . . . , X n ) g(X_1,X_2,...,X_n) g(X1,X2,...,Xn)观测值
  • 说明:
    • 直观上,统计量是由统计数据计算得来的量。数学上,统计量是样本 X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn 的函数,不依赖于任何未知参数
    • 作为随机变量的函数,统计量也是随机变量

2.1.2 常用统计量

2.1.2.1 两类常用统计量
  1. 数字样本特征

    • 样本均值 X ˉ = 1 n ∑ i = 1 n X i \bar{X} = \frac{1}{n} \sum \limits_{i=1}^n X_i Xˉ=n1i=1nXi
    • 样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2 = \frac{1}{n-1} \sum\limits_{i=1}^n (X_i-\bar{X})^2 S2=n11i=1n(XiXˉ)2
      样本标准差 S = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S = \sqrt{\frac{1}{n-1}\sum \limits_{i=1}^n (X_i-\bar{X})^2} S=n11i=1n(XiXˉ)2
    • 样本k阶(原点)矩 A k = 1 n ∑ i = 1 n X i k ( k = 1 , 2 , . . . ) A_k = \frac{1}{n}\sum\limits_{i=1}^nX_i^k (k=1,2,...) Ak=n1i=1nXik(k=1,2,...)
    • 样本k阶中心矩 B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k ( k = 2 , 3 , . . . ) B_k = \frac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})^k (k=2,3,...) Bk=n1i=1n(XiXˉ)k(k=2,3,...)
  2. 顺序统计量

    • 将样本 X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn 的n个观测量按其取值从小到大的顺序排列,得
      X ( 1 ) ≤ X ( 2 ) ≤ . . . ≤ X ( n ) X_{(1)} \leq X_{(2)} \leq...\leq X_{(n)} X(1)X(2)...X(n)
      随机变量 X ( k ) ( k = 1 , 2 , . . . , n ) X_{(k)}(k=1,2,...,n) X(k)(k=1,2,...,n) 称作 k k k 顺序统计量,其中 X ( 1 ) X_{(1)} X(1) 是最小的顺序统计量,而 X ( n ) X_{(n)} X(n) 是最大顺序统计量,即
      X ( 1 ) = m i n { X 1 , X 2 , … , X n } X ( n ) = m a x { X 1 , X 2 , … , X n } X_{(1)} = min\{X_1,X_2,…,X_n\}\\X_{(n)}=max\{X_1,X_2,…,X_n\} X(1)=min{X1,X2,,Xn}X(n)=max{X1,X2,,Xn}
    • 注: 在这里插入图片描述
      • 推导1
        F X ( n ) ( x ) = P { X ( n ) ≤ x } = P { m a x { X 1 , X 2 , … , X n } ≤ x } = P { X 1 ≤ x , . . . , X n ≤ x } = P { X 1 ≤ x } . . . P { X n ≤ x } = F X 1 ( x ) . . . F X n ( x ) = [ F ( x ) ] n f X ( n ) ( x ) = F X ( n ) ′ ( x ) = n [ F ( x ) ] n − 1 f ( x ) \begin{aligned} F_{X(n)}(x) &= P\{X_{(n)} \leq x\} \\ &= P\{max\{X_1,X_2,…,X_n\} \leq x\} \\ &= P\{X_1 \leq x,...,X_n \leq x\} \\ &= P\{X_1 \leq x\}...P\{X_n \leq x\} \\ &= F_{X_1}(x)...F_{X_n}(x) \\ &= [F(x)]^n\\ f_{X(n)}(x) &= F_{X(n)}^{'}(x) \\ &= n[F(x)]^{n-1} f(x) \\ \end{aligned} FX(n)(x)fX(n)(x)=P{X(n)x}=P{max{X1,X2,,Xn}x}=P{X1x,...,Xnx}=P{X1x}...P{Xnx}=FX1(x)...FXn(x)=[F(x)]n=FX(n)(x)=n[F(x)]n1f(x)
      • 推导2
        F X ( 1 ) ( x ) = P { X ( 1 ) ≤ x } = P { m i n { X 1 , X 2 , … , X n } ≤ x } = 1 − P { m i n { X 1 , X 2 , … , X n } > x } = 1 − P { X 1 > x , . . . , X n > x } = 1 − P { X 1 > x } . . . P { X n > x } = 1 − [ 1 − P { X 1 ≤ x } ] . . . [ 1 − P { X n ≤ x } ] = 1 − [ 1 − F X 1 ( x ) ] . . . [ 1 − F X n ( x ) ] = 1 − [ 1 − F ( x ) ] n f X ( 1 ) ( x ) = F X ( 1 ) ′ ( x ) = n [ 1 − F ( x ) ] n − 1 f ( x ) \begin{aligned} F_{X(1)}(x) &= P\{X_{(1)} \leq x\} \\ &= P\{min\{X_1,X_2,…,X_n\} \leq x\} \\ &= 1 - P\{min\{X_1,X_2,…,X_n\} > x\} \\ &= 1 - P\{X_1 > x,...,X_n > x\} \\ &= 1 - P\{X_1 > x\}...P\{X_n > x\} \\ &= 1 - [1-P\{X_1 \leq x\}]...[1-P\{X_n \leq x\}] \\ &= 1 - [1-F_{X_1}(x)]...[1-F_{X_n}(x)]\\ &= 1 - [1-F(x)]^n\\ f_{X(1)}(x) &= F_{X(1)}^{'}(x) \\ &= n[1-F(x)]^{n-1} f(x) \\ \end{aligned} FX(1)(x)fX(1)(x)=P{X(1)x}=P{min{X1,X2,,Xn}x}=1P{min{X1,X2,,Xn}>x}=1P{X1>x,...,Xn>x}=1P{X1>x}...P{Xn>x}=1[1P{X1x}]...[1P{Xnx}]=1[1FX1(x)]...[1FXn(x)]=1[1F(x)]n=FX(1)(x)=n[1F(x)]n1f(x)
  3. 说明

    • 样本均值就是样本的一阶原点矩
    • 样本方差不是二阶中心距。和期望不同,虽然算方差时也有n个元素求和,但系数不是 1 n \frac{1}{n} n1 而是 1 n − 1 \frac{1}{n-1} n11,这样调整是为了估计的无偏性
2.1.2.2 常用统计量的性质
  • 设总体 X X X 的期望 E X = μ EX=\mu EX=μ,方差 D X = σ 2 DX = \sigma^2 DX=σ2 X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn 是取自总体 X X X ,容量为 n n n 的一个样本, X ˉ , S 2 \bar{X},S^2 Xˉ,S2 分别为样本均值和方差,则
    1. E X i = μ EX_i =\mu EXi=μ
    2. D X i = σ 2 ( i = 1 , 2 , . . . , n ) DX_i = \sigma^2(i=1,2,...,n) DXi=σ2(i=1,2,...,n)
    3. E X ˉ = E ( 1 n ∑ i = 1 n X i ) = 1 n n μ = μ E\bar{X} = E(\frac{1}{n} \sum\limits_{i=1}^nX_i)=\frac{1}{n}n\mu = \mu EXˉ=E(n1i=1nXi)=n1nμ=μ
    4. D X ˉ = D ( 1 n ∑ i = 1 n X i ) = 1 n 2 n σ 2 = σ 2 n D\bar{X} = D(\frac{1}{n} \sum\limits_{i=1}^nX_i)=\frac{1}{n^2}n\sigma^2=\frac{\sigma^2}{n} DXˉ=D(n1i=1nXi)=n21nσ2=nσ2
    5. E ( S 2 ) = D X = σ 2 E(S^2)=DX=\sigma^2 E(S2)=DX=σ2
  • 说明
    • 由于 X i X_i Xi 独立同分布,每个样本的期望和方差都与总体相同,其波动中心一致,因此均值的期望不变;波动程度相当于做了均值滤波减小了,因此方差为原先的 1 n \frac{1}{n} n1
    • 样本方差 S 2 S^2 S2 系数是 1 n − 1 \frac{1}{n-1} n11 的原因就是为了使 E ( S 2 ) E(S^2) E(S2) 为无偏估计 σ 2 \sigma^2 σ2,分析如下
      S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = 1 n − 1 ∑ i = 1 n ( X i 2 − 2 X i X ˉ + X ˉ 2 ) = 1 n − 1 ( ∑ i = 1 n X i 2 − 2 X ˉ ∑ i = 1 n X i + n X ˉ 2 ) = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ˉ 2 ) E S 2 = 1 n − 1 E ( ∑ i = 1 n X i 2 − n X ˉ ) = 1 n − 1 ( ∑ i = 1 n E X i 2 − n E X ˉ 2 ) = 1 n − 1 [ n ( ( E X i ) 2 + D X i − ( E X ˉ ) 2 − D X ˉ ) ] = 1 n − 1 [ n ( μ 2 + σ 2 − μ 2 − σ 2 n ) ] = σ 2 \begin{aligned} S^2 &= \frac{1}{n-1} \sum\limits_{i=1}^n (X_i-\bar{X})^2 \\ &= \frac{1}{n-1} \sum\limits_{i=1}^n(X_i^2-2X_i\bar{X}+ \bar{X}^2) \\ &= \frac{1}{n-1} (\sum_{i=1}^nX_i^2-2\bar{X}\sum_{i=1}^nX_i+n\bar{X}^2)\\ &= \frac{1}{n-1} (\sum_{i=1}^nX_i^2-n\bar{X}^2)\\ ES^2 &= \frac{1}{n-1} E(\sum\limits_{i=1}^nX_i^2-n\bar{X}) \\ &= \frac{1}{n-1} (\sum_{i=1}^nEX_i^2 - nE\bar{X}^2) \\ &= \frac{1}{n-1} [n((EX_i)^2+DX_i - (E\bar{X})^2-D\bar{X})]\\ &= \frac{1}{n-1} [n(\mu^2+\sigma^2-\mu^2-\frac{\sigma^2}{n})]\\ &= \sigma^2 \end{aligned} S2ES2=n11i=1n(XiXˉ)2=n11i=1n(Xi22XiXˉ+Xˉ2)=n11(i=1nXi22Xˉi=1nXi+nXˉ2)=n11(i=1nXi2nXˉ2)=n11E(i=1nXi2nXˉ)=n11(i=1nEXi2nEXˉ2)=n11[n((EXi)2+DXi(EXˉ)2DXˉ)]=n11[n(μ2+σ2μ2nσ2)]=σ2

2.2 三大分布

  • X 2 \mathcal{X}^2 X2 分布、 t t t 分布、 F F F 分布是统计推断中最常用的抽样分布。
  • 不必记忆三种分布的概率密度,只需了解相应变量的典型模式,以及它们的分布曲线的示意图和分位数,会查相应分位数的数值表即可
  • 分布名下标表示 “上分位点”

2.2.1 X 2 \mathcal{X}^2 X2分布

  1. 典型模式

    • 若随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 相互独立,且都服从标准正态分布(即 X i ∼ i . i . d N ( 0 , 1 ) X_i\stackrel{i.i.d}{\sim} N(0,1) Xii.i.dN(0,1) ),则随机变量 X = ∑ i = 1 n X i 2 X = \sum\limits_{i=1}^nX_i^2 X=i=1nXi2 服从 自由度 n n n X 2 \mathcal{X}^2 X2分布,记为 X ∼ X 2 ( n ) X \sim \mathcal{X}^2(n) XX2(n)。特别地, X i 2 ∼ X 2 ( 1 ) X_i^2 \sim \mathcal{X}^2(1) Xi2X2(1)
    • X X X 的概率密度 f ( x ) f(x) f(x) 如下所示
      在这里插入图片描述
    • 对给定的 α ( 0 < α < 1 ) \alpha(0<\alpha<1) α(0<α<1),称满足
      P ( X 2 > X α 2 ( n ) ) = ∫ X α 2 ( n ) + ∞ f ( x ) d x = α P(\mathcal{X^2}>\mathcal{X_{\alpha}^2(n)}) = \int_{X_{\alpha}^2(n)}^{+\infin} f(x)dx = \alpha P(X2>Xα2(n))=Xα2(n)+f(x)dx=α
      X α 2 ( n ) X_{\alpha}^2(n) Xα2(n) X 2 ( n ) X^2(n) X2(n) 分布的上 α \alpha α 分位点,如下所示
      在这里插入图片描述
      对于不同的 α \alpha α 和 n, X 2 ( n ) X^2(n) X2(n) 分布的上 α \alpha α 分位点可以通过查表求得
    • 说明:
      • 自由度是指和式中独立变量个数
      • α \alpha α 分位点为 μ α \mu_{\alpha} μα 意指:点 μ α \mu_{\alpha} μα 右侧,概率密度曲线 f ( x ) f(x) f(x) 下方与x轴围成的面积为 α \alpha α
  2. 性质

    • 分布可加性:若 X 1 ∼ X 2 ( n 1 ) X_1 \sim \mathcal{X}^2(n_1) X1X2(n1) X 2 ∼ X 2 ( n 2 ) X_2 \sim \mathcal{X}^2(n_2) X2X2(n2) X 1 X_1 X1 X 2 X_2 X2 相互独立,则 X 1 + X 2 ∼ X 2 ( n 1 + n 2 ) X_1+X_2 \sim \mathcal{X}^2(n_1+n_2) X1+X2X2(n1+n2)。一般地,若 X i ∼ X 2 ( n i ) ( i = 1 , 2 , . . . , m ) X_i \sim \mathcal{X}^2(n_i)(i=1,2,...,m) XiX2(ni)(i=1,2,...,m) X 1 , X 2 , . . . , X m X_1,X_2,...,X_m X1,X2,...,Xm 相互独立,则 ∑ i = 1 m X i ∼ X 2 ( ∑ i = 1 m n i ) \sum\limits_{i=1}^mX_i \sim \mathcal{X}^2(\sum\limits_{i=1}^mn_i) i=1mXiX2(i=1mni)
    • X ∼ X 2 ( n ) X \sim \mathcal{X}^2(n) XX2(n),则 E X = n , D X = 2 n EX = n,DX=2n EX=n,DX=2n

2.2.2 t t t 分布

  1. 典型模式
    • 设随机变量 X ∼ N ( 0 , 1 ) , Y ∼ X 2 ( n ) X \sim N(0,1), Y\sim \mathcal{X}^2(n) XN(0,1),YX2(n) X X X Y Y Y 相互独立,则随机变量 t = X Y n t=\frac{X}{\sqrt{\frac{Y}{n}}} t=nY X 服从自由度为 n n n t t t 分布,记为 t ∼ t ( n ) t\sim t(n) tt(n)
    • t t t 分布的概率密度 f ( x ) f(x) f(x) 的图形关于 x = 0 x=0 x=0 对称,因此 E t = 0 ( n ≥ 2 ) E_t=0(n\geq2) Et=0(n2)
      在这里插入图片描述
  2. 性质
    • t t t 分布概率密度 f ( x ) f(x) f(x) 图像对称性,有 P { t > − t α ( n ) } = P { t > t 1 − α ( n ) } P\{t>-t_{\alpha}(n)\} = P\{t>t_{1-\alpha}(n)\} P{t>tα(n)}=P{t>t1α(n)},故 t 1 − α ( n ) = − t α ( n ) t_{1-\alpha}(n) = -t_{\alpha}(n) t1α(n)=tα(n)
    • t ∼ t ( n ) t \sim t(n) tt(n),则 E t = 0 Et = 0 Et=0

2.2.3 F F F 分布

  1. 典型模式
    • 设随机变量 X ∼ X 2 ( n 1 ) , Y ∼ X 2 ( n 2 ) X \sim \mathcal{X}^2(n_1),Y\sim \mathcal{X}^2(n_2) XX2(n1),YX2(n2),且 X X X Y Y Y 相互独立,则 F = X / n 1 Y / n 2 F = \frac{X/n_1}{Y/n_2} F=Y/n2X/n1 服从自由度为 ( n 1 , n 2 ) (n_1,n_2) (n1,n2) F F F 分布,记为 F ∼ F ( n 1 , n 2 ) F \sim F(n_1,n_2) FF(n1,n2),其中 n 1 n_1 n1 称为第一自由度, n 2 n_2 n2 称为第二自由度
    • F F F 分布的概率密度函数 f ( x ) f(x) f(x) 如图所示
      在这里插入图片描述
  2. 性质
    • F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2),则 1 F ∼ F ( n 2 , n 1 ) \frac{1}{F} \sim F(n_2,n_1) F1F(n2,n1)
    • F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)} F1α(n1,n2)=Fα(n2,n1)1,证明如下
      记 F ∼ F ( n 2 , n 1 ) P { F > F α ( n 2 , n 1 ) } = α , P { F ≤ F α ( n 2 , n 1 ) } = 1 − α , P { 1 F ≥ 1 F α ( n 2 , n 1 ) } = 1 − α 令 T = 1 F , 则 T ∼ F ( n 1 , n 2 ) 有 P { T ≥ F 1 − α ( n 1 , n 2 ) } = 1 − α 故 F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) \begin{aligned} &记 F\sim F(n_2,n_1) \\ &P\{F>F_\alpha(n_2,n_1)\} = \alpha,\\ &P\{F\leq F_\alpha(n_2,n_1)\} = 1-\alpha,\\ &P\{\frac{1}{F} \geq \frac{1}{F_\alpha(n_2,n_1)}\}=1-\alpha\\ &令 T= \frac{1}{F},则T\sim F(n_1,n_2)\\ &有P\{T\geq F_{1-\alpha}(n_1,n_2)\}=1-\alpha\\ &故F_{1-\alpha}(n_1,n_2) = \frac{1}{F_\alpha(n_2,n_1)} \end{aligned} FF(n2,n1)P{F>Fα(n2,n1)}=α,P{FFα(n2,n1)}=1α,P{F1Fα(n2,n1)1}=1αT=F1,TF(n1,n2)P{TF1α(n1,n2)}=1αF1α(n1,n2)=Fα(n2,n1)1

2.3 正态总体下常用结论

  • X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的一个样本, X ˉ 、 S 2 \bar{X}、S^2 XˉS2 分布是样本均值和方差,则

    1. X ˉ ∼ N ( μ , σ 2 n ) \bar{X} \sim N(\mu,\frac{\sigma^2}{n}) XˉN(μ,nσ2),即 X ˉ − μ σ n = n ( X ˉ − μ ) σ ∼ N ( 0 , 1 ) \frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1) n σXˉμ=σn (Xˉμ)N(0,1)
      联 合 正 态 分 布 性 质 : 若 ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 , ; ρ ) , 则 X 和 Y 的 线 性 组 合 a X + b Y ( a ≠ 0 或 b ≠ 0 ) 服 从 正 态 分 布 这 里 X ˉ 即 为 X 1 , X 2 , . . . , X n 的 线 性 组 合 , 因 此 服 从 正 态 分 布 \begin{aligned} &联合正态分布性质:若(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2,;\rho), \\ & 则X和Y的线性组合aX+bY(a \neq 0 或 b\neq0)服从正态分布\\ &这里\bar{X} 即为X_1,X_2,...,X_n的线性组合,因此服从正态分布 \end{aligned} (X,Y)N(μ1,μ2;σ12,σ22,;ρ),XY线aX+bY(a=0b=0)XˉX1,X2,...,Xn线

    2. 1 σ 2 ∑ i + 1 n ( X i − μ ) 2 ∼ X 2 ( n ) \frac{1}{\sigma^2}\sum\limits_{i+1}^n(X_i-\mu)^2\sim\mathcal{X}^2(n) σ21i+1n(Xiμ)2X2(n)
      因 为 X i ∼ i . i . d N ( μ , σ 2 ) 标 准 化 有 X i − μ σ ∼ N ( 0 , 1 ) 根 据 X 2 分 布 定 义 , ∑ i = 1 n ( X i − μ σ ) 2 ∼ X 2 ( n ) \begin{aligned} &因为 X_i\stackrel{i.i.d}{\sim} N(\mu,\sigma^2)\\ &标准化有\frac{X_i-\mu}{\sigma} \sim N(0,1) \\ &根据\mathcal{X}^2分布定义,\sum\limits_{i=1}^n(\frac{X_i-\mu}{\sigma})^2\sim\mathcal{X}^2(n) \end{aligned} Xii.i.dN(μ,σ2)σXiμN(0,1)X2,i=1n(σXiμ)2X2(n)

    3. ( n − 1 ) S 2 σ 2 = ∑ i = 1 n ( X i − X ˉ σ ) 2 ∼ X 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}=\sum\limits_{i=1}^n(\frac{X_i-\bar{X}}{\sigma})^2\sim\mathcal{X}^2(n-1) σ2(n1)S2=i=1n(σXiXˉ)2X2(n1),( μ \mu μ未知时,在(2)中用 X ˉ \bar{X} Xˉ代替 μ \mu μ)

      • 欲使用公式 (2) 而期望 μ \mu μ 未知时,使用均值 X ˉ \bar{X} Xˉ 代替期望 μ \mu μ
      • 这个证明困难,只要知道结论即可。直观上理解,由于 X ˉ \bar{X} Xˉ 中各随机变量 X i X_i Xi 相互纠缠,分布自由度相比 (2) 中减少1
    4. X ˉ \bar{X} Xˉ S 2 S^2 S2 相互独立, n ( X ˉ − μ ) S ∼ t ( n − 1 ) \frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t(n-1) Sn (Xˉμ)t(n1) ,进一步有 n ( X ˉ − μ ) 2 S 2 ∼ F ( 1 , n − 1 ) \frac{n(\bar{X}-\mu)^2}{S^2}\sim F(1,n-1) S2n(Xˉμ)2F(1,n1)

      • 欲使用公式 (1) 而标准差 σ \sigma σ 未知时,用样本标准差 S S S 替代标准差 σ \sigma σ
      • 证明如下
        已 知 X ˉ − μ σ / n ∼ N ( 0 , 1 ) 已 知 ( n − 1 ) S 2 σ 2 ∼ X 2 ( n − 1 ) 根 据 t 分 布 定 义 , 有 X ˉ − μ σ / n ( n − 1 ) S 2 σ 2 / ( n − 1 ) ∼ t ( n − 1 ) 整 理 得 n ( X ˉ − μ ) S ∼ t ( n − 1 ) \begin{aligned} &已知\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1) \\ & 已知\frac{(n-1)S^2}{\sigma^2}\sim\mathcal{X}^2(n-1) \\ & 根据t分布定义,有 \frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}} \sim t(n-1) \\ & 整理得\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t(n-1) \end{aligned} σ/n XˉμN(0,1)σ2(n1)S2X2(n1)tσ2(n1)S2/(n1) σ/n Xˉμt(n1)Sn (Xˉμ)t(n1)
  • 这些结论在进行 参数区间估计假设检验 时非常有用,结论1/4常用于估计 μ \mu μ,结论2/3常用于估计 σ \sigma σ,具体见下一篇文章

  • 9
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值