线性代数拾遗(3)—— “系数矩阵的秩” 和 “齐次线性方程组基础解系向量个数” 的关系

  • 本文说明以下重要结论

    n n n 元齐次线性方程组的解空间的维数(基础解系中向量个数),加上此方程组系数矩阵的秩 r r r,等于未知量个数 n n n


  • 考虑一个 n n n 元齐次线性方程组如下,它总共有 n n n 个未知数和 m m m 个方程(显式约束)
    { a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = 0 . . . a m 1 x 1 + a m 2 x 2 + a m 3 x 3 + . . . + a m n x n = 0 \left\{\begin{matrix} a_{11}x_1+a_{12}x_2+a_{13}x_3+...+a_{1n}x_n=0\\ a_{21}x_1+a_{22}x_2+a_{23}x_3+...+a_{2n}x_n=0 \\...\\ a_{m1}x_1+a_{m2}x_2+a_{m3}x_3+...+a_{mn}x_n=0 \end{matrix}\right. a11x1+a12x2+a13x3+...+a1nxn=0a21x1+a22x2+a23x3+...+a2nxn=0...am1x1+am2x2+am3x3+...+amnxn=0

1. 行向量视角

  • 将系数矩阵 A m × n \pmb{A}_{m\times n} Am×n m m m n n n 维行向量 α i = [ a i 1 , a i 2 , . . . , a i n ] ⊤ \pmb{\alpha}_i=[a_{i1},a_{i2},...,a_{in}]^\top αi=[ai1,ai2,...,ain] 表示,原方程组变形为
    A x = [ α 1 , α 2 , . . . , α m ] ⊤ x = [ α 1 x , α 2 x , . . . , α m x ] ⊤ = 0 \begin{aligned} \pmb{Ax} &= [\pmb{\alpha}_1,\pmb{\alpha}_2,...,\pmb{\alpha}_m]^\top\pmb{x} \\&= [\pmb{\alpha}_1\pmb{x},\pmb{\alpha}_2\pmb{x},...,\pmb{\alpha}_m\pmb{x}]^\top = \pmb{0} \end{aligned} Ax=[α1,α2,...,αm]x=[α1x,α2x,...,αmx]=0 设秩 rank ( A ) = r \text{rank}(\pmb{A})=r rank(A)=r,根据性质 “矩阵的秩 = 列向量组的秩 = 行向量组的秩”,得到行向量组 α 1 , α 2 , . . . , α m \pmb{\alpha}_1,\pmb{\alpha}_2,...,\pmb{\alpha}_m α1,α2,...,αm 的秩也为 r r r
  • 行向量组秩为 r r r,说明只要 r r r 个方程,就能线性表示全部 m m m 个方程,这样就能通过行初等变换消去多余的方程(高斯消元法),留下的有效方程(约束)个数只有 r r r
  • n n n 个未知数只能约束 r r r 个,剩余的 n − r n-r nr 个未知数就可以任意取值,因此解空间维数,即基础解系中(线性无关)向量个数为 n − r n-r nr
  • 综上,解空间的维数 n − r n-r nr + 系数矩阵秩 r r r = 未知数个数 n n n

2. 列向量视角

  • 将系数矩阵 A m × n \pmb{A}_{m\times n} Am×n n n n m m m 维列向量 α i = [ a 1 i , a 2 i , . . . , a m i ] ⊤ \pmb{\alpha}_i=[a_{1i},a_{2i},...,a_{mi}]^\top αi=[a1i,a2i,...,ami] 表示,原方程组变形为
    A x = [ α 1 , α 2 , . . . , α n ] x = x 1 α 1 + x 2 α 2 + . . . + x n α n = 0 \begin{aligned} \pmb{Ax} &= [\pmb{\alpha}_1,\pmb{\alpha}_2,...,\pmb{\alpha}_n]\pmb{x} \\ &= x_1\pmb{\alpha}_1+x_2\pmb{\alpha}_2 +...+x_n\pmb{\alpha}_n = \pmb{0} \end{aligned} Ax=[α1,α2,...,αn]x=x1α1+x2α2+...+xnαn=0 设秩 rank ( A ) = r \text{rank}(\pmb{A})=r rank(A)=r,根据性质 “矩阵的秩 = 列向量组的秩 = 行向量组的秩”,列向量组 α 1 , α 2 , . . . , α n \pmb{\alpha}_1,\pmb{\alpha}_2,...,\pmb{\alpha}_n α1,α2,...,αn 的秩也为 r r r
  • 把矩阵 A \pmb{A} A 通过初等行变换化阶梯型 B \pmb{B} B,得到同解方程组 x 1 β 1 + x 2 β 2 + . . . + x n β n = 0 x_1\pmb{\beta}_1+x_2\pmb{\beta}_2 +...+x_n\pmb{\beta}_n = \pmb{0} x1β1+x2β2+...+xnβn=0这时有
    1. 由于来自阶梯型矩阵,每个列向量 β i \pmb{\beta}_i βi 的非零元素都集中在上方
    2. 由于初等行变换不改变列向量线性相关性(说明见此文第2节), β 1 , β 2 , . . . , β n \pmb{\beta}_1,\pmb{\beta}_2,...,\pmb{\beta}_n β1,β2,...,βn 的秩也为 r r r
    3. 由于同解,下面仅分析新方程的情况
  • 由于秩为 r r r B \pmb{B} B 中一共有 r r r 个阶梯,从每层阶梯任取一个列向量组成极大线性无关组。为了符号简便,不妨假设前 r r r 个列向量 β 1 , β 2 , . . . , β r \pmb{\beta}_1,\pmb{\beta}_2,...,\pmb{\beta}_r β1,β2,...,βr 组成极大线性无关组,这意味着:
    1. r r r 个列向量组成的齐次线性方程组 x 1 β 1 + x 2 β 2 + . . . + x r β r = 0 x_1\pmb{\beta}_1+x_2\pmb{\beta}_2 +...+x_r\pmb{\beta}_r = \pmb{0} x1β1+x2β2+...+xrβr=0 只有零解
    2. n − r n-r nr 个列向量组成的向量组 β r + 1 , β r + 2 , . . . , β n \pmb{\beta}_{r+1},\pmb{\beta}_{r+2},...,\pmb{\beta}_n βr+1,βr+2,...,βn 的秩 r ′ ≤ r r' \leq r rr
    3. 由于每个列向量 β i \pmb{\beta}_i βi 的非零元素都集中在上方,极大线性无关组 β 1 , β 2 , . . . , β r \pmb{\beta}_1,\pmb{\beta}_2,...,\pmb{\beta}_r β1,β2,...,βr 可以唯一地线性表出任意后 m − r m-r mr 个元素为 0 0 0 m m m 维列向量 b = [ b 1 , b 2 , . . . , b r , 0 , 0 , . . . , 0 ] ⊤ ∈ R m \pmb{b} = [b_1,b_2,...,b_r,0,0,...,0]^\top \in R^m b=[b1,b2,...,br,0,0,...,0]Rm同理 β r + 1 , β r + 2 , . . . , β n \pmb{\beta}_{r+1},\pmb{\beta}_{r+2},...,\pmb{\beta}_n βr+1,βr+2,...,βn 可以线性表出(不一定唯一)任意后 m − r ′ m-r' mr 个元素为 0 0 0 m m m 维列向量 b ′ = [ b 1 ′ , b 2 ′ , . . . , b r ′ ′ , 0 , 0 , . . . , 0 ] ⊤ ∈ R m \pmb{b}' = [b_1',b_2',...,b'_{r'},0,0,...,0]^\top \in R^m b=[b1,b2,...,br,0,0,...,0]Rm
  • 对化阶梯型得到的同解齐次线性方程组移项,把极大线性无关组向量和其他向量分别放在等号两边,即
    x 1 β 1 + x 2 β 2 + . . . + x r β r = − x r + 1 β r + 1 − x r + 2 β r + 2 − . . . − x n β n x_1\pmb{\beta}_1+x_2\pmb{\beta}_2 +...+x_r\pmb{\beta}_r = -x_{r+1}\pmb{\beta}_{r+1}-x_{r+2}\pmb{\beta}_{r+2}-...-x_n\pmb{\beta}_n x1β1+x2β2+...+xrβr=xr+1βr+1xr+2βr+2...xnβn 这时,等号右边的 n − r n-r nr 个未知数 x r + 1 , x r + 2 , . . . , x n x_{r+1},x_{r+2},...,x_n xr+1,xr+2,...,xn 可以任取以组合出任意后 m − r ′ m-r' mr 个元素为 0 0 0 m m m 维列向量,由于 r ′ ≤ r r'\leq r rr,根据前述分析,左边 x 1 , . . . , x r x_1,...,x_r x1,...,xr 必有唯一取值使得等号成立。因此解空间维数,即基础解系中(线性无关)向量个数为 n − r n-r nr
  • 综上,解空间的维数 n − r n-r nr + 系数矩阵秩 r r r = 未知数个数 n n n
  • 16
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值