矩阵论(零):线性代数基础知识整理(3)——矩阵的秩与向量组的秩

矩阵论专栏:专栏(文章按照顺序排序)

本篇博客接着上篇博客矩阵论(零):线性代数基础知识整理(2)——矩阵的秩与向量组的秩的内容,主要整理秩相关的结论。

  • 线性方程组的解与向量组的秩
    • 线性方程组的解
    • 向量组的秩
  • 零矩阵的判定定理
  • 关于秩的重要结论(结合向量组的秩、分块矩阵的秩的方法进行总结)
    • 矩阵的秩与向量组的秩的关系
    • 常用矩阵秩相关的等式和不等式
      • 公式1: ∣ r ( A ) − r ( B ) ∣ ⩽ r ( A ± B ) ⩽ r ( A ) + r ( B ) |r(A)-r(B)|\leqslant r(A\pm B)\leqslant{}r(A)+r(B) r(A)r(B)r(A±B)r(A)+r(B)以及取等号的条件
      • 公式2: r ( A B ) ⩽ m i n { r ( A ) , r ( B ) } r(AB)\leqslant{}min\{r(A),r(B)\} r(AB)min{ r(A),r(B)}
      • 公式3(Sylvester不等式): r ( A ) + r ( B ) − n ⩽ r ( A B ) r(A)+r(B)-n\leqslant{}r(AB) r(A)+r(B)nr(AB)以及取等号的条件
      • 公式4(Frobenius不等式) r ( A B C ) ⩾ r ( A B ) + r ( B C ) − r ( B ) r(ABC)\geqslant r(AB)+r(BC)-r(B) r(ABC)r(AB)+r(BC)r(B)以及取等号的条件
      • 公式5 r ( I − A B ) ⩽ r ( I − A ) + r ( I − B ) r(I-AB)\leqslant r(I-A)+r(I-B) r(IAB)r(IA)+r(IB)
      • 公式6:若 A B = B A AB=BA AB=BA,则 r ( A + B ) ⩽ r ( A ) + r ( B ) − r ( A B ) r(A+B)\leqslant r(A)+r(B)-r(AB) r(A+B)r(A)+r(B)r(AB)
      • 公式7 r ( A ) = r ( A H A ) = r ( A A H ) = r ( A H A A H ) = r ( A A H A ) r(A)=r(A^HA)=r(AA^H)=r(A^HAA^H)=r(AA^HA) r(A)=r(AHA)=r(AAH)=r(AHAAH)=r(AAHA)
      • 公式8:若 W = Y T A X W=Y^TAX W=YTAX非奇异,则 r ( A − A X W − 1 Y T A ) = r ( A ) − r ( A X W − 1 Y T A ) r(A-AXW^{-1}Y^TA)=r(A)-r(AXW^{-1}Y^TA) r(AAXW1YTA)=r(A)r(AXW1YTA)
        • 推论:Wedderburn秩1化简公式
      • 公式9:设 A A A n n n阶方阵,则 r ( A n ) = r ( A n + 1 ) = r ( A n + 2 ) = . . . r(A^n)=r(A^{n+1})=r(A^{n+2})=... r(An)=r(An+1)=r(An+2)=...
    • 常见相关推论

由于篇幅太长,加上公式太多打开网页渲染慢的原因,目录中的内容分两篇博客来写,上篇是矩阵论(零):线性代数基础知识整理(2)——矩阵的秩与向量组的秩。上篇博客包含:目录中公式3及其之前的所有内容,包括定理1~20和所有提到的定义。


常用秩的等式和不等式
  • 引理: r [ A O C B ] = r [ A O O B ] r\begin{bmatrix}A&O\\C&B\end{bmatrix}=r\begin{bmatrix}A&O\\O&B\end{bmatrix} r[ACOB]=r[AOOB]的充要条件为存在矩阵 X , Y X,Y X,Y使得 C = X A + B Y C=XA+BY C=XA+BY
    证:
    充分性: r [ A O C B ] = r [ A O X A + B Y B ] = 行变换 r [ A O B Y B ] = 列变换 r [ A O O B ] \begin{aligned}r\begin{bmatrix}A&O\\C&B\end{bmatrix}&=r\begin{bmatrix}A&O\\XA+BY&B\end{bmatrix}\\&\overset{\text{行变换}}{=}r\begin{bmatrix}A&O\\BY&B\end{bmatrix}\\&\overset{\text{列变换}}{=}r\begin{bmatrix}A&O\\O&B\end{bmatrix}\end{aligned} r[ACOB]=r[AXA+BYOB]=行变换r[ABYOB]=列变换r[AOOB]
    必要性:由等价标准形定理,存在可逆矩阵 P 1 , Q 1 , P 2 , Q 2 P_1,Q_1,P_2,Q_2 P1,Q1,P2,Q2使得 P 1 A Q 1 = [ I t O O O ] P_1AQ_1=\begin{bmatrix}I_t&O\\O&O\end{bmatrix} P1AQ1=[ItOOO] P 2 B Q 2 = [ I s O O O ] P_2BQ_2=\begin{bmatrix}I_s&O\\O&O\end{bmatrix} P2BQ2=[IsOOO],其中 t = r ( A ) , s = r ( B ) t=r(A),s=r(B) t=r(A),s=r(B)。计算可得 [ P 1 O O P 2 ] [ A O O B ] [ Q 1 O O Q 2 ] = [ I t O I s O ] \begin{bmatrix}P_1&O\\O&P_2\end{bmatrix}\begin{bmatrix}A&O\\O&B\end{bmatrix}\begin{bmatrix}Q_1&O\\O&Q_2\end{bmatrix}=\begin{bmatrix}I_t&&&\\&O&&\\&&I_s&\\&&&O\end{bmatrix} [P1OOP2][AOOB][Q1OOQ2]=ItOIsO以及 [ P 1 O O P 2 ] [ A O C B ] [ Q 1 O O Q 2 ] = [ I t O D 1 D 2 I s D 3 D 4 O ] \begin{bmatrix}P_1&O\\O&P_2\end{bmatrix}\begin{bmatrix}A&O\\C&B\end{bmatrix}\begin{bmatrix}Q_1&O\\O&Q_2\end{bmatrix}=\begin{bmatrix}I_t&&&\\&O&&\\D_1&D_2&I_s&\\D_3&D_4&&O\end{bmatrix} [P1OOP2][ACOB][Q1OOQ2]=ItD1D3OD2D4IsO其中 [ D 1 D 2 D 3 D 4 ] = P 2 C Q 1 \begin{bmatrix}D_1&D_2\\D_3&D_4\end{bmatrix}=P_2CQ_1 [D1D3D2D4]=P2CQ1。由于左乘/右乘可逆矩阵不改变矩阵的秩,上面两个式子等号右端的分块矩阵有相同的秩。第二式等号右端的矩阵可通过分块行初等变换消去子块 D 1 , D 3 D_1,D_3 D1,D3,再通过分块列初等变换消去子块 D 2 D_2 D2,于是 r [ I t O I s O ] = r [ I t O D 1 D 2 I s D 3 D 4 O ] = r [ I t O I s D 4 O ] r\begin{bmatrix}I_t&&&\\&O&&\\&&I_s&\\&&&O\end{bmatrix}=r\begin{bmatrix}I_t&&&\\&O&&\\D_1&D_2&I_s&\\D_3&D_4&&O\end{bmatrix}=r\begin{bmatrix}I_t&&&\\&O&&\\&&I_s&\\&D_4&&O\end{bmatrix} rItOIsO=rItD1D3OD2D4IsO=rItOD4IsO t + s = r [ I t O I s O ] = r [ I t O I s D 4 O ] = t + s + r ( D 4 ) t+s=r\begin{bmatrix}I_t&&&\\&O&&\\&&I_s&\\&&&O\end{bmatrix}=r\begin{bmatrix}I_t&&&\\&O&&\\&&I_s&\\&D_4&&O\end{bmatrix}=t+s+r(D_4) t+s=rItOIsO=rItOD4IsO=t+s+r(D4)这就得到 r ( D 4 ) = 0 r(D_4)=0 r(D4)=0 D 4 = O D_4=O D4=O P 2 C Q 1 = [ D 1 D 2 D 3 O ] P_2CQ_1=\begin{bmatrix}D_1&D_2\\D_3&O\end{bmatrix} P2CQ1=[D1D3D2O]。令 S = [ D 1 O D 3 O ] S=\begin{bmatrix}D_1&O\\D_3&O\end{bmatrix} S=[D1D3OO]

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值