Person Re-Identification by Deep Learning Multi-Scale Representations 论文笔记

Person Re-Identification by Deep Learning Multi-Scale Representations 论文笔记

一、提出问题

现有的re-id方法主要依赖于单一尺度的外观信息,但是这不仅会忽略了其他不同尺度的潜在有用的显性信息,而且还失去了跨尺度挖掘隐式相关互补的优势。

  • 在不同尺度上的特征学习可能不同甚至相互不一致,因此多尺度的直接特征连接不可能导致最优特征融合;
  • 不同特征金字塔等级之间的任何互补关系是未知的,并且对于不同的图像可能不是恒定的,因此必须在数据之间协同地学习和优化;
  • 行人在开放式监视场景中可以以任意比例(未知)出现。

二、论文贡献

  • 研究了re-id的多尺度特征学习问题;
  • 提出一种新颖的深层金字塔特征学习(DPFL)设计,不仅通过同时优化同一人标签信息上的多个分类损失函数来学习规模特定的判别特征,而且还通过闭环形式的多尺度一致正则化来最大化联合多尺度互补融合特征选择。该设计通过金字塔中的层间特征交互克服了跨尺度特征学习差异,同时在小批量训练迭代中实现累积的多尺度互补特征选择。

三、多尺度行人重识别

3. 1 问题描述

目标:在没有任何度量变换的情况下学习基于通用距离(例如,L1,L2)的行人重识别的深度特征表示模型。

训练集,标签,同一个人的不同图像

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在模型无关的分层强化学习中,学习表示是一项重要的任务。学习表示是指通过提取有用的信息和特征来将观察数据转化为表示向量。这些表示向量可以用于解决强化学习问题中的决策和行动选择。 模型无关的分层强化学习是指不依赖于环境模型的强化学习方法。它通常由两个部分组成:低层控制策略和高层任务规划器。低层控制策略负责实际的行动选择和执行,而高层任务规划器则负责指导低层控制策略的决策过程。 学习表示在模型无关的分层强化学习中起到至关重要的作用。通过学习适当的表示,可以提高对观察数据的理解能力,使得模型能够捕捉到环境中的重要特征和结构。这些表示可以显著减少观察数据的维度,并提供更高层次的抽象,从而简化了决策和规划的过程。 学习表示的方法多种多样,包括基于深度学习的方法和基于特征选择的方法。基于深度学习的方法,如卷积神经网络和循环神经网络,可以通过学习多层次的特征表示来提取环境观察数据的有用信息。而基于特征选择的方法则通过选择最有信息量的特征来减少表示的维度,从而简化了模型的复杂度。 总之,学习表示在模型无关的分层强化学习中起到了至关重要的作用。通过学习适当的表示,模型可以更好地理解观察数据并进行决策和规划。不同的方法可以用来实现学习表示,包括基于深度学习的方法和基于特征选择的方法。这些方法的选择取决于具体任务和问题的需求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值