自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 资源 (1)
  • 问答 (2)
  • 收藏
  • 关注

原创 论文笔记5:VRSTC: Occlusion-Free Video Person Re-Identification

视频人物再识别(re-ID)在监控视频分析中占有重要地位。然而,在部分遮挡条件下,视频重识别性能严重退化。在本文中,我们提出了一种新的网络,称为时空补全网络(STCnet),以显式地处理部分遮挡问题。STCnet不同于以往大多数作品都是丢弃被遮挡的帧,STCnet可以恢复被遮挡部分的外观。首先,行人框架的空间结构可以用来从该框架的未遮挡身体部位预测遮挡的身体部位。另一方面,行人序列的时间模式为生成被遮挡部分的内容提供了重要线索。

2023-02-23 17:03:15 395 2

原创 论文笔记4:Temporal Complementary Learning for Video Person Re-Identification

提出了一种时间互补学习网络,提取连续视频帧的互补特征,用于视频人物的再识别。首先,我们介绍了一个时序显著性擦除模块,包括显著性擦除操作和一系列有序学习器。具体而言,对于视频的特定帧,显著性擦除操作通过擦除前一帧激活的部分来驱动特定学习器挖掘新的和互补的部分。这样可以发现连续帧的不同视觉特征,最终形成目标身份的整体特征。此外,设计了时间显著性增强(TSB)模块,在视频帧之间传播显著性信息,以增强显著性特征。它与TSE互补,有效缓解了TSE擦除操作造成的信息损失。

2023-02-17 10:33:30 247

原创 论文笔记3:BiCnet-TKS: Learning Efficient Spatial-Temporal Representation for Video Person Re-Identificat

本文提出了一种有效的视频人物再识别的时空表示方法。首先,我们提出了一个双边互补网络(BiCnet)来进行空间互补建模。具体来说,BiCnet包含两个分支。细节分支以原始分辨率处理帧以保留详细的视觉线索,上下文分支采用下采样策略捕获长范围上下文。在每个分支上,BiCnet添加多个并行且多样化的注意模块,对连续帧发现发散的身体部位,从而获得目标身份的整体特征。此外,还设计了一个时序核选择(TKS)块,通过自适应模式捕获短期和长期的时序关系。

2023-02-09 15:50:59 496 3

原创 论文笔记2:Video-based Person Re-identification with Spatial and Temporal Memory Networks

人物视频中的空间和时间干扰因素,例如背景杂波和帧上的部分遮挡,分别使这项任务比基于图像的人物识别更具挑战性。我们观察到空间干扰物在特定位置一致地出现,而时间干扰物则表现出几种模式,例如,部分遮挡出现在前几帧,这种模式为预测关注哪一帧提供了信息线索(即时间注意力)。在此基础上,我们提出了一种新的时空记忆网络(STMN)。空间记忆存储了视频帧中频繁出现的空间干扰特征,而时间记忆存储了针对真人视频中典型时间模式优化的注意力。

2023-02-03 17:44:45 440 1

原创 论文笔记Multi-Scale Temporal Cues Learning for Video Person Re-Identification

摘要中提到将时间线索嵌入到视频中对于行人重识别是一个非常重要的线索。为了解决将时间线索嵌入应用到ReID中,提出了一个新的方法,在原来的2D卷积网络中,添加一个新的被叫做M3D(Multi-scale 3D convolution layer)的卷积层。根据M3D在2D卷积网络插入的位置,可分为局部M3D和全局M3D。局部M3D层被插入2D卷积层之间,用来学习相邻2D特征图之间的空时域线索。全局M3D被用来计算相邻帧特征向量,以学习它们的全局时间关系。因此,局部和全局M3D层学习互补的时间线索。

2022-11-26 16:52:30 431

原创 网络优化与正则化学习

在第 𝑡 次迭代时,梯度为 𝒈𝑡,给定一个区间 [𝑎, 𝑏],如果一个参数数的梯度小于𝑎时,就将其设为𝑎;一种有效地缓解梯度估计随机性的方式是通过使用最近一段时间内的平均梯度来代替当前时刻的随机梯度来作为参数更新的方向,从而提高优化速度。为了提高训练的稳定性,在最初几轮迭代中,采用比较小的学习率,等梯度下降到一定程度后在恢复到初始学习率。梯度截断是一种比较简单的启发方式,把梯度的模限定在一个区间,当梯度的模小于或大于这个区间时就进行截断。使用更有效的优化算法来提高梯度下降优化方法的效率和稳定性。

2022-10-22 17:18:53 515

原创 过拟合、欠拟合和正则化

很好的拟合训练集,所以代价函数J(θ)非常接近于0或者等于0。但是这样的曲线由于它千方百计地拟合训练集中地数据,就会导致它无法泛化到新的样本中。图1.通过图中的数据可以明显看出随着房子面积增大,住房价格逐渐稳定,因此该算法没有很好的拟合训练集,称为欠拟合或者叫做高偏差(后面会提到),当参数值越小,就意味着更简单的假设函数模型。概括的说过拟合的问题,过拟合将会出现在变量过多的时候,这时候训练出来的假设函数。图2.曲线较好的穿过了每一个点。因此该算法较好的拟合了训练集。新样本:就是那些没有出现在训练集的数据。

2022-09-16 19:41:05 382

原创 zookeeper安装

zookeeper3.4.14安装1.安装解压zookeeper文件tar -zxf zookeeper-3.4.14.tar.gz -C /usr/local2.配置进入confcd /usr/localzookeeper-3.4.14/conf复制zoo_sample.cfg名为zoo.cfgcp -i zoo_sample.cfg zoo.cfg在zookeeper-3.4.14目录下创建zKDatamkdir -p zkData再次进入conf目vi zoo.

2022-01-19 20:36:49 1555 1

原创 spark安装笔记

1.配置profile将spark解压到指定目录tar -zxf spark-3.1.2.tgz -C /usr/localvim /etc/profileexport SPARK_HOME=/usr/spark-3.1.2-bin-hadoop3.2export PATH=$PATH:${SPARK_HOME}/bin2.spark-env.sh配置进入目录spark/confcd /usr/local/spark-3.1.2-bin-hadoop3.2/conf复制sp

2022-01-19 20:28:15 1504

原创 hadoop安装(超详细)

完整搭建Hadoop-2.6.5的分布式集群,本文搭建了一个主节点和两个从节点。

2022-01-17 22:00:18 4308 1

hadoop安装(超详细).docx

这是在学校安装分布式hadoop集群总结的安装步骤

2022-01-16

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除