一、写在前面
本文所用例子为个人学习的小结,如有不足之处请各位多多海涵,欢迎小伙伴一起学习进步,如果想法可在评论区指出,我会尽快回复您,不胜感激!
所公布代码或截图均为运行成功后展示。
嘿嘿,小小免责声明一下!部分代码可能与其他网络例子相似,如原作者看到有不满,请联系我修改,感谢理解与支持!
二、本文内容
使用OpenCV的人脸模型分类器文件: haarcascade_frontalface_default.xml(这是一个预训练的机器学习模型,用于在图像中检测正面人脸)识别素材库中的人脸,素材库中选取了迪丽热巴(我爱热巴,超小声~)的部分照片,并训练出迪丽热巴的正脸模型。
效果:可以识别并框出人脸,并标注姓名,同时对比使用了古力娜扎的照片,能识别出不是热巴(选取了娜扎的照片,sorry娜扎~)并标注为who?
三、开发环境
1.Python 3.9
2.OpenCV
3.numpy
4.pillow
IDE:
1.Pycharm
四、素材准备
迪丽热巴的正脸照片N张,照片越多越好,提高模型准确性:
对比组古力娜扎照片N张,只是用于判断模型能区分:
五、代码实现
(一)定义文件路径
请根据自己文件储存的实际路径修改。
#分类器路径
classifier = r"F:\opencv-libs\opencv\sources\data\haarcascades\haarcascade_frontalface_default.xml"
# 需要训练的素材库路径
path = r"C:\Users\Administrator\Desktop\picture\trainer"
#训练好的模型存储路径
tranierfile = r"C:\Users\Administrator\Desktop\picture\trainer.yml"
(二)定义方法:创建数组储存人脸数据和对应姓名
从指定路径读取图像文件,然后使用 OpenCV 的 Haar 特征分类器来检测图像中的人脸,并将face和对应的name 存储在列表中。
def getImageAndLabels(path):
# 人脸数据数组
facesList = []
# 姓名数据数组
nameList = []
# 图片信息
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
# 加载分类器
face_detector =cv2.CascadeClassifier(classifier)
# 遍历列表中的图片
for imagePath in imagePaths:
# 打开图片
PIL_img = Image.open(imagePath).convert('L')
# 将图像转为数组
imgNumpy = np.array(PIL_img, 'uint8')
# 获取图片人脸特征
faces = face_detector.detectMultiScale(imgNumpy)
# 获取每张图片的id和姓名
face = int(os.path.split(imagePath)[1].split('.')[0])
# 预防无面容照片
for x, y, w, h in faces:
nameList.append(face)
facesList.append(imgNumpy[y:y + h, x: x + w])
print('face=', face)
print('facesList =', facesList)
return facesList, nameList
(三)调用训练模型的方法
根据素材库中热巴的照片所生成的数组数据,加载到识别器中,运行后得到训练过的迪丽热巴正脸模型。
if __name__ == '__main__':
# 获取facelist和namelist
facesList, nameList = getImageAndLabels(path)
# 加载识别器
recognizer = cv2.face.LBPHFaceRecognizer_create()
# 训练热巴模型
recognizer.train(facesList, np.array(nameList))
# 保存模型文件
recognizer.write(tranierfile)
六、获得模型
训练完成后,我们将得到迪丽热巴的人脸模型文件trainer.yml,我们将在下一节中开始识别人脸的学习。
七、感谢
感谢各位大佬的莅临,学习之路漫漫,吾将上下而求索。有任何想法请在评论区留言哦!
再次感谢!