[ Python+OpenCV ] 人脸识别模型训练(一)

一、写在前面

       本文所用例子为个人学习的小结,如有不足之处请各位多多海涵,欢迎小伙伴一起学习进步,如果想法可在评论区指出,我会尽快回复您,不胜感激!

        所公布代码或截图均为运行成功后展示。

        嘿嘿,小小免责声明一下!部分代码可能与其他网络例子相似,如原作者看到有不满,请联系我修改,感谢理解与支持!

二、本文内容

        使用OpenCV的人脸模型分类器文件: haarcascade_frontalface_default.xml(这是一个预训练的机器学习模型,用于在图像中检测正面人脸)识别素材库中的人脸,素材库中选取了迪丽热巴(我爱热巴,超小声~)的部分照片,并训练出迪丽热巴的正脸模型。

        效果:可以识别并框出人脸,并标注姓名,同时对比使用了古力娜扎的照片,能识别出不是热巴(选取了娜扎的照片,sorry娜扎~)并标注为who?

           

       

三、开发环境

1.Python 3.9

2.OpenCV

3.numpy

4.pillow

IDE:

1.Pycharm

四、素材准备

迪丽热巴的正脸照片N张,照片越多越好,提高模型准确性:

对比组古力娜扎照片N张,只是用于判断模型能区分:

五、代码实现

(一)定义文件路径

        请根据自己文件储存的实际路径修改。

#分类器路径
classifier = r"F:\opencv-libs\opencv\sources\data\haarcascades\haarcascade_frontalface_default.xml"
# 需要训练的素材库路径
path = r"C:\Users\Administrator\Desktop\picture\trainer"
#训练好的模型存储路径
tranierfile = r"C:\Users\Administrator\Desktop\picture\trainer.yml"

(二)定义方法:创建数组储存人脸数据和对应姓名

        从指定路径读取图像文件,然后使用 OpenCV 的 Haar 特征分类器来检测图像中的人脸,并将face和对应的name 存储在列表中。

def getImageAndLabels(path):
    # 人脸数据数组
    facesList = []
    # 姓名数据数组
    nameList = []
    # 图片信息
    imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
    # 加载分类器
    face_detector =cv2.CascadeClassifier(classifier)
    # 遍历列表中的图片
    for imagePath in imagePaths:
        # 打开图片
        PIL_img = Image.open(imagePath).convert('L')
        # 将图像转为数组
        imgNumpy = np.array(PIL_img, 'uint8')
        # 获取图片人脸特征
        faces = face_detector.detectMultiScale(imgNumpy)
        # 获取每张图片的id和姓名
        face = int(os.path.split(imagePath)[1].split('.')[0])
        # 预防无面容照片
        for x, y, w, h in faces:
            nameList.append(face)
            facesList.append(imgNumpy[y:y + h, x: x + w])

        print('face=', face)
    print('facesList =', facesList)

    return facesList, nameList

(三)调用训练模型的方法

        根据素材库中热巴的照片所生成的数组数据,加载到识别器中,运行后得到训练过的迪丽热巴正脸模型。

if __name__ == '__main__':
    # 获取facelist和namelist
    facesList, nameList = getImageAndLabels(path)
    # 加载识别器
    recognizer = cv2.face.LBPHFaceRecognizer_create()
    # 训练热巴模型
    recognizer.train(facesList, np.array(nameList))
    # 保存模型文件
    recognizer.write(tranierfile)

六、获得模型

        训练完成后,我们将得到迪丽热巴的人脸模型文件trainer.yml,我们将在下一节中开始识别人脸的学习。

        

七、感谢

        感谢各位大佬的莅临,学习之路漫漫,吾将上下而求索。有任何想法请在评论区留言哦!

        再次感谢!

        

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值