链接:http://uoj.ac/problem/290
树形DP
(披着仙人掌的外衣)
去掉环就变成了若干棵树,分别DP即可
没有重边的性质非常好,这样我们就可以对于没有被覆盖的边,变成重边,每条边都要被覆盖,就可以DP了
复杂度是线性的
UPD:实际上不用DP,直接πF[d[i]]即可
d[i]为度数,因为对于非根节点,它向上的边我们也可以认为是另一条边指向它
即,对于x这个儿子向上的一条边如果穿过了i,我们可以认为x和i配对,是等价的
#include <bits/stdc++.h>
#define xx first
#define yy second
#define mp make_pair
#define pb push_back
#define fill( x, y ) memset( x, y, sizeof x )
#define copy( x, y ) memcpy( x, y, sizeof x )
using namespace std;
typedef long long LL;
typedef pair < int, int > pa;
inline int read()
{
int sc = 0; char ch = getchar();
while( ch < '0' || ch > '9' ) ch = getchar();
while( ch >= '0' && ch <= '9' ) sc = sc * 10 + ch - '0', ch = getchar();
return sc;
}
const int MAXN = 500005;
const int mod = 998244353;
struct edge { int to, nxt, tree; } e[MAXN << 1];
int head[MAXN], e_cnt, root[MAXN], dep[MAXN], n, m, st[MAXN], top, F[MAXN], fa[MAXN], ans;
inline void add(int x, int y) { e[ ++e_cnt ] = { y, head[ x ], 0 }; head[ x ] = e_cnt; }
inline void addedge(int x, int y) { add( x, y ); add( y, x ); }
inline void dfs1(int x)
{
for( int i = head[ x ] ; i ; i = e[ i ].nxt )
if( e[ i ].to ^ fa[ x ] )
{
if( !dep[ e[ i ].to ] ) e[ i ].tree = 1, dep[ e[ i ].to ] = dep[ fa[ e[ i ].to ] = x ] + 1, dfs1( e[ i ].to );
else st[ ++top ] = i;
}
}
inline void dfs2(int x, bool isroot = 0)
{
int cnt = 0;
for( int i = head[ x ] ; i ; i = e[ i ].nxt )
if( e[ i ].tree && !root[ e[ i ].to ] )
dfs2( e[ i ].to ), cnt++;
if( !isroot ) cnt++;
ans = 1LL * ans * F[ cnt ] % mod;
}
inline void solve()
{
scanf( "%d%d", &n, &m ); top = 0; e_cnt = ans = 1;
for( int i = 1 ; i <= n ; i++ ) dep[ i ] = head[ i ] = root[ i ] = 0;
for( int i = 1 ; i <= m ; i++ ) addedge( read(), read() );
dep[ 1 ] = 1; dfs1( 1 );
for( int i = 1 ; i <= top ; i++ )
{
if( st[ i ] & 1 ) continue;
int x = e[ st[ i ] ].to, y = e[ st[ i ] ^ 1 ].to;
if( dep[ x ] < dep[ y ] ) swap( x, y );
for( ; x ^ y ; x = fa[ x ] )
if( ++root[ x ] == 2 ) { puts( "0" ); return ; }
}
root[ 1 ] = 1;
for( int i = 1 ; i <= n ; i++ ) if( root[ i ] ) dfs2( i, 1 );
printf( "%d\n", ans );
}
int main()
{
#ifdef wxh010910
freopen( "data.in", "r", stdin );
#endif
int T = read();
F[ 0 ] = F[ 1 ] = 1;
for( int i = 2 ; i < MAXN ; i++ ) F[ i ] = ( F[ i - 1 ] + 1LL * ( i - 1 ) * F[ i - 2 ] ) % mod;
while( T-- ) solve();
return 0;
}