题目大意:给你一个无重边无自环的无向连通图,问有多少种加边方法,使得加完边之后这个图是一个仙人掌
好像蛮厉害的一个题
我们把仙人掌想象成DFS树+返祖边,显然返祖边连接的两个点之间的路径不能有交
因为题目中说了不能有重边,所以我们可以想象把最后仙人掌的那些“桥”又连了一条边,这样就变成了我们要把DFS树上所有的边都用“返祖边两点之间的路径”来覆盖
这个我们可以怎么做呢?
首先题目中已经有一些返祖边了,我们不妨把这些边端点之间的边全部拆掉,这样剩下的就形成了森林,方案数乘起来就可以了
然后考虑树形DP
f[i]表示以i为根的子树完全覆盖有多少种方案
g[i]表示在这基础上还能伸出来一叉的方案数
这样f[i]等于所有g[j]的乘积再乘把他们组合起来(两两配对或者自己一组)的方案数
g[i]等于f[i]加上枚举其中一叉支到上面的方案数
那个方案数只和度数有关,预处理一发就好了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 500010
#define M 2000010
using namespace std;
int mod=998244353;
int to[M],nxt[M],pre[N],cnt=1;
bool used[M];
void ae(int ff,int tt)
{
cnt++;
to[cnt]=tt;
nxt[cnt]=pre[ff];
pre[ff]=cnt;
used[cnt]=false;
}
int d[N],fa[N],com[N];
bool vis[N],cut[N];
void build(int x)
{
int i,j;
vis[x]=true;
for(i=pre[x];i;i=nxt[i])
{
j=to[i];
if(vis[j]) continue;
fa[j]=x;d[j]=d[x]+1;
used[i]=used[i^1]=true;
com[j]=i;
build(j);
}
}
long long f[N],g[N];
long long dp[N];
void dfs(int x)
{
int i,j;
f[x]=1;
int du=0;
for(i=pre[x];i;i=nxt[i])
if(used[i])
{
j=to[i];
if(j==fa[x]) continue;
dfs(j);
if(cut[j]) continue;
(f[x]*=g[j])%=mod;
du++;
}
if(du) g[x]=f[x]*(dp[du]+du*dp[du-1]%mod)%mod;
else g[x]=1;
(f[x]*=dp[du])%=mod;
}
void doit()
{
int n,m;
scanf("%d%d",&n,&m);
int i,j,x,y;
for(i=2;i<=cnt;i++)
used[i]=false;
cnt=1;
for(i=1;i<=n;i++)
{
vis[i]=cut[i]=false;
pre[i]=0;
}
for(i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
ae(x,y);ae(y,x);
}
build(1);
for(x=1;x<=n;x++)
for(i=pre[x];i;i=nxt[i])
if(!used[i])
{
j=to[i];
if(d[j]<d[x]) continue;
while(j!=x)
{
if(cut[j]) {puts("0");return;}
cut[j]=true;
j=fa[j];
}
}
long long ans=1;
cut[1]=true;
dfs(1);
for(i=1;i<=n;i++)
if(cut[i]) ans=ans*f[i]%mod;
printf("%lld\n",ans);
}
int main()
{
int i;
dp[0]=1;dp[1]=1;dp[2]=2;
for(i=3;i<=500000;i++)
dp[i]=(dp[i-1]+(i-1)*dp[i-2])%mod;
int T;
scanf("%d",&T);
while(T--)
doit();
}