BZOJ4784: [Zjoi2017]仙人掌

26 篇文章 0 订阅
9 篇文章 0 订阅

题目大意:给你一个无重边无自环的无向连通图,问有多少种加边方法,使得加完边之后这个图是一个仙人掌


好像蛮厉害的一个题

我们把仙人掌想象成DFS树+返祖边,显然返祖边连接的两个点之间的路径不能有交

因为题目中说了不能有重边,所以我们可以想象把最后仙人掌的那些“桥”又连了一条边,这样就变成了我们要把DFS树上所有的边都用“返祖边两点之间的路径”来覆盖


这个我们可以怎么做呢?

首先题目中已经有一些返祖边了,我们不妨把这些边端点之间的边全部拆掉,这样剩下的就形成了森林,方案数乘起来就可以了

然后考虑树形DP

f[i]表示以i为根的子树完全覆盖有多少种方案

g[i]表示在这基础上还能伸出来一叉的方案数

这样f[i]等于所有g[j]的乘积再乘把他们组合起来(两两配对或者自己一组)的方案数

g[i]等于f[i]加上枚举其中一叉支到上面的方案数

那个方案数只和度数有关,预处理一发就好了


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 500010
#define M 2000010
using namespace std;
int mod=998244353;
int to[M],nxt[M],pre[N],cnt=1;
bool used[M];
void ae(int ff,int tt)
{
	cnt++;
	to[cnt]=tt;
	nxt[cnt]=pre[ff];
	pre[ff]=cnt;
	used[cnt]=false;
}
int d[N],fa[N],com[N];
bool vis[N],cut[N];
void build(int x)
{
	int i,j;
	vis[x]=true;
	for(i=pre[x];i;i=nxt[i])
	{
		j=to[i];
		if(vis[j]) continue;
		fa[j]=x;d[j]=d[x]+1;
		used[i]=used[i^1]=true;
		com[j]=i;
		build(j);
	}
}
long long f[N],g[N];
long long dp[N];
void dfs(int x)
{
	int i,j;
	f[x]=1;
	int du=0;
	for(i=pre[x];i;i=nxt[i])
	if(used[i])
	{
		j=to[i];
		if(j==fa[x]) continue;
		dfs(j);
		if(cut[j]) continue;
		(f[x]*=g[j])%=mod;
		du++;
	}
	if(du) g[x]=f[x]*(dp[du]+du*dp[du-1]%mod)%mod;
	else g[x]=1;
	(f[x]*=dp[du])%=mod;
}
void doit()
{
	int n,m;
	scanf("%d%d",&n,&m);
	int i,j,x,y;
	for(i=2;i<=cnt;i++)
	used[i]=false;
	cnt=1;
	for(i=1;i<=n;i++)
	{
		vis[i]=cut[i]=false;
		pre[i]=0;
	}
	for(i=1;i<=m;i++)
	{
		scanf("%d%d",&x,&y);
		ae(x,y);ae(y,x);
	}
	build(1);
	for(x=1;x<=n;x++)
	for(i=pre[x];i;i=nxt[i])
	if(!used[i])
	{
		j=to[i];
		if(d[j]<d[x]) continue;
		while(j!=x)
		{
			if(cut[j]) {puts("0");return;}
			cut[j]=true;
			j=fa[j];
		}
	}
	long long ans=1;
	cut[1]=true;
	dfs(1);
	for(i=1;i<=n;i++)
	if(cut[i]) ans=ans*f[i]%mod;
	printf("%lld\n",ans);
}
int main()
{
	int i;
	dp[0]=1;dp[1]=1;dp[2]=2;
	for(i=3;i<=500000;i++)
	dp[i]=(dp[i-1]+(i-1)*dp[i-2])%mod;
	int T;
	scanf("%d",&T);
	while(T--)
	doit();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值