数学建模优化类——【最大最小规划】

在博 弈 论 中 有 一 个 经 典 理 论 —— 最 大 最 小 策 略 ( Minimax strategy ) , 是 由 博 弈 论 奠 基 人 约翰·冯·诺伊曼在1928年提出的一种在理性行为基础上做的保守博弈策略:使得博弈者的最小收入最大化的策略。这个思想再实际问题中也有很多应用,比如:在投资规划中要确定最大风险的最低限度,所以对于每个xi,我们先求出目标值fi(x)的最大值,然后再在这些最大值中取最小值

一、数学模型建立:

其中C(x)<=0,Ceq(x)=0,为非线性不等式,其他的参数都与线性规划中的含义相同 

二、利用fminimax函数求解

[x,favl] = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,option) 

该函数与非线性规划函数用法基本一致,但注意目标函数需要用函数向量表示 

典例:选址问题

 

 我们易知两点之间直线最短,那现在我们肯定要考虑不同的中心,路程最远的情况下,哪个中心的情况下距离最短。则我们应该使用最大最小值规划法

  1. 模型建立

这里路程最远,肯定是按着网格线走对吧,那么我们可以列出函数表达式为:

      2.约束条件

那么我们就可以利用fminimax函数进行求解

 

%选址问题
clear,clc
%给定初始值
x0=[6,6];
lb=[3,4];%决策变量上界,直接用逗号分隔表示不同决策变量的取值范围
ub=[8,10];%决策变量下界
[x,feval]=fminimax(@fun,x0,[],[],[],[],lb,ub);%此时要单独写一个fun函数
max = max(feval);%得到最大距离取到最小时的最大距离

注意这里参数fun我们需要单独写一个函数fun

%建立目标函数
function f = fun(x)
    a=[1,4,3,5,9,12,6,20,17,8];
    b=[2,10,8,18,1,4,5,10,8,9];
    %函数向量,注意要将f初始化用来存储得到的函数值
    f=zeros(10,1);
    for i=1:10
    f(i)=abs(x(1)-a(i))+abs(x(2)-b(i));%这里x(1)表示x,x(2)表示y
    end
end

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自由的风.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值