Recently, the bear started studying data structures and faced the following problem.
You are given a sequence of integers x1, x2, ..., xn of length n and m queries, each of them is characterized by two integers li, ri. Let's introduce f(p) to represent the number of such indexes k, that xk is divisible by p. The answer to the query li, ri is the sum: , where S(li, ri) is a set of prime numbers from segment [li, ri] (both borders are included in the segment).
Help the bear cope with the problem.
Input
The first line contains integer n (1 ≤ n ≤ 106). The second line contains n integers x1, x2, ..., xn (2 ≤ xi ≤ 107). The numbers are not necessarily distinct.
The third line contains integer m (1 ≤ m ≤ 50000). Each of the following m lines contains a pair of space-separated integers, li and ri(2 ≤ li ≤ ri ≤ 2·109) — the numbers that characterize the current query.
Output
Print m integers — the answers to the queries on the order the queries appear in the input.
Examples
input
Copy
6 5 5 7 10 14 15 3 2 11 3 12 4 4
output
Copy
9 7 0
input
Copy
7 2 3 5 7 11 4 8 2 8 10 2 123
output
Copy
0 7
Note
Consider the first sample. Overall, the first sample has 3 queries.
- The first query l = 2, r = 11 comes. You need to count f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9.
- The second query comes l = 3, r = 12. You need to count f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7.
- The third query comes l = 4, r = 4. As this interval has no prime numbers, then the sum equals 0.
题意:
给你一列数字,有m个询问,问你在l,r区间里所有的质数,可以整除题目所给的数字的数量是多少。
思路:
刚开始我觉得是素数分解,和递推。但在18组超时,后来看了别人的解法才明白素数打表即可。但要注意了l,r的范围,具体看代码。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define LL long long
using namespace std;
const int maxn=1e6+100;
const int maxm=1e7+100;
int a[maxn];
int cnt[maxm];
int dp[maxm];
int prime[maxm];
int vis[maxm];
void init(int gg)
{
vis[1]=1;
int mm=gg;
for(int i=2;i<=mm;i++)
{
if(!vis[i])
{
dp[i]+=cnt[i];
for(int j=i+i;j<=mm;j+=i)
{
dp[i]+=cnt[j];
vis[j]=1;
}
}
}
return;
}
int main()
{
int n,m;
scanf("%d",&n);
int gg=-1;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
cnt[a[i]]++;
gg=max(gg,a[i]);
}
init(gg);
for(int i=1;i<=gg;i++)
{
dp[i]+=dp[i-1];
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int l,r;
scanf("%d%d",&l,&r);
int pos1=min(l-1,gg);
int pos2=min(r,gg);
int ans=dp[pos2]-dp[pos1];
printf("%d\n",ans);
}
return 0;
}
反思:做题时总是考虑边界不全面,还有这次素数打表让我知道更多的用途。