空调开高一度觉得热、开低一度觉得冷的问题原因,DIY外加温控器解决

博主分享了自己改造定频空调温控系统的经历,通过使用51单片机和DS18B20传感器实现更精确的温度控制,解决了体感不适的问题。然而,当更换为变频空调后,由于内机、外机通讯的复杂性,无法再进行改造,虽然变频空调在温控和节能上有所提升,但仍存在温度波动的困扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2022.7

美的定频空调。控温不准,几年前以前写过《美的空调温度显示不准,开27度也冷,NTC探头串电阻,研究改造》。

对于空调本身来说:温度传感器是装在进风口的,会受到下面出风口的回风影响;内部的控制程序我们是不知道的,不知道做得怎么样;温度传感器采用热敏电阻,精度和诸多因素有关。  最终就是温控不准。

开高一度觉得热,开低一度觉得冷的问题,以前格力定频的也是这样。原因不明,造成了极大的烦恼。


所以2020年自己改造温控,把测温接远一点,自己写程序来试试看。

定频空调很简单,外机(压缩机)电源线就是通过内机的继电器来通断而已,注意压缩机断电后隔3分钟才能再开机就行了。 所以,自己改就是把外机线切开,串个温控器,用温控器的继电器来通断外机电源线。温控器放在远一点的地方,测温就比较准了。(空调内机遥控开19度温度,内机继电器是一直通电)

可以网上买一个空调温控器来改,串入这个温控器。实际可能继电器容量不够需要另外加继电器什么的复杂一些。


我采用51单片机来做,拉了几米长的线放在床头边上,采用DS18B20测温就比较准。直接以床头的温度来控制外机的启停。

实际用来下发现,好了很多,但有时觉得还是会开高一度觉得热,开低一度觉得冷。觉得温度设定值要0.5度分度可能才行,但一直没空去改程序。

这个问题一直没时间解决。今年才又跟踪分析了一下,终于解决,原来是我程序上的启动温差造成的!

原先启动温差是1度,比如设定26度,则26度以下停机,27度以上开机。
人体就是奇怪,空调一停,就会觉得热,26度停机后,等温度上升到27度,已经过了有点长时间,所以人体觉得“很热”了,空调才启动。

如果设成25度时,因为25度时,整个房间都要下降一度,空调又要拼命制冷很久很久温度才会降得下来,这时制冷开机又太久了,人体就是这样奇怪,稍微吹久一点空调,又觉得“太冷”了。

所以最终就是造成体感很差。哎,太难了。


后来就不设定启动温差,因为我的程序上有3分钟间隔启动时间在那里。
设定26度,小于26度关机,大于26度开机。间隔3分钟,温度肯定高于26度了,所以外机会马上开,开完温度一小于26度,就关了。即压缩机会频繁启停,但这时温度波动小,空调不会开太久,也不会停太久,体感非常好!

真的完美解决!

--另外,DS18B20比较灵敏,温度有点波动就变化快些。而如果用HTU31D,它是焊在电路板上的,所以不太灵敏,测温变化慢,控制起来就有滞后性。用DS18B20比较好些。

以上是定频空调。刚完美解决这个问题后,自己头脑一热,听说变频空调省电,这几天又换了一台变频空调。

变频空调是内机、外机通讯的,不是简单的电源通断,所以自己是无法改造温控的!

实际用下来发现,变频空调是省电一些,温控比定频好一些,体感比定频好,但也是温度波动稍大些,床头的温度显示有时25度多,有时27、28度。

怎么办?又回到起点了。太难了。


 

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值