【洛谷刷题】--分治思想-快速幂取模

 使用快速幂,时间复杂度在log2(p)。

原理:

(1)如果将 a自乘一次,就会变成 a^2 。再把 a^2自乘一次就会变成 a^4 。然后是 a^8…… 自乘 n次的结果是 a^{2^{n}} 。对吧……

(2)a^xa^y = a^{x+y}=ax+y,这个容易。

(3)将 b 转化为二进制观看一下:

比如 b = (11)10​ 就是 (1011)2​ 。从左到右,这些 11 分别代表十进制的 8,2,18,2,1。可以说 a^{11} = a^8 × a^2 × a^1a11=a8×a2×a1。

如果 p 在二进制上的某一位是 1,我们就把答案乘上对应的 a2n

取模运算:

 

#include<iostream>
#include<math.h>
using namespace std;
#define ll long long

int main()
{
    ll b,p,k,s;
    cin>>b>>p>>k;
    cout<<b<<"^"<<p<<" mod "<<k<<"=";
    s=1;
    while(p>0){
        if(p&1)  //=> b%2==1
            s=s*b%k;
        b=b*b%k;
        p=p>>1; // => p/=2
    }
    cout<<s%k;
    return 0;
}

 参考:https://www.luogu.org/problemnew/solution/P1226

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值