使用快速幂,时间复杂度在log2(p)。
原理:
(1)如果将 a自乘一次,就会变成 a^2 。再把 a^2自乘一次就会变成 a^4 。然后是 a^8…… 自乘 n次的结果是 a^{2^{n}} 。对吧……
(2)a^xa^y = a^{x+y}=ax+y,这个容易。
(3)将 b 转化为二进制观看一下:
比如 b = (11)10 就是 (1011)2 。从左到右,这些 11 分别代表十进制的 8,2,18,2,1。可以说 a^{11} = a^8 × a^2 × a^1a11=a8×a2×a1。
如果 p 在二进制上的某一位是 1,我们就把答案乘上对应的 a2n
取模运算:
#include<iostream>
#include<math.h>
using namespace std;
#define ll long long
int main()
{
ll b,p,k,s;
cin>>b>>p>>k;
cout<<b<<"^"<<p<<" mod "<<k<<"=";
s=1;
while(p>0){
if(p&1) //=> b%2==1
s=s*b%k;
b=b*b%k;
p=p>>1; // => p/=2
}
cout<<s%k;
return 0;
}