1、HashMap1.8之前
HashMap1.8之前的数据结构是采用 数组+链表组成。
我们的重点可以放到1.8以后对HashMap进行的一系列优化。
2、HashMap1.8之后
HashMap1.8之后的数据结构是采用 数组+链表+红黑树组成
1.8主要优化了哪些低地方?
- 数组+链表改成了数组+链表或红黑树;
- 链表的插入方式从头插法改为了尾插法,简单说就是插入时,如果数组位置上已经有元素,1.7将新元素放到数组中,原始节点作为新节点的后继节点,1.8遍历链表,将元素放置到链表的最后;
- 扩容的时候1.7需要对原数组中的元素进行重新hash定位在新数组的位置,1.8采用更简单的判断逻辑,位置不变或索引+旧容量大小;
- 在插入时,1.7先判断是否需要扩容,在插入;1.8先进行插入,插入完成再判断是否需要扩容;
为什么1.8后要升级HashMap的数据结构呢?
这主要是为了提升性能。因为在hash冲突严重的时(链表过长)的查找性能,使用链表的查找性能是O(n),而使用红黑树是O(logn)
什么时候使用链表?什么时候使用红黑树?
对于插入的时候,默认情况下是使用链表节点。
当同一个索引位置在新增后达到9个(阈值8):
如果此时链表长度大于64,就会触发链表节点转换为红黑树节点(treeifyBin);
如果数组长度小于64,则不会触发链表转换红黑树,而是会进行扩容,因为此时的数据量还比较小。
对于删除,当同一个索引位置的节点在移除后达到6个,并且该索引位置的节点为红黑树节点,会出发红黑树节点转链表节点
为什么链表转红黑树的阈值是8?
在进行方案设计时,需要考虑两个很重要的因素:时间和空间。阈值8是在时间和空间上权衡后的结,。红黑树节点占用空间大小为链表的节点的2倍,在节点太少时,红黑树的查找性能并不明显,付出2倍空间的代价作者觉得不值得。另外通过计算,链表中个数为8时的概率是十分低的。因此8是个合理的数字。
为什么转回链表用6而不是复用8?
如果设置8个转为红黑树,少于8个转为链表,当节点个数在8个徘徊时,就会频繁进行红黑树和链表的转换,造成性能的损耗。
HashMap有哪些主要的属性?分别用于做什么?
用于存储节点table数组。
size:HashMap已经存储的节点个数
threshold:扩容阈值,当HashMap的个数达到该值,会出发扩容机制
loadFactor:负载因子(默认是0.75),扩容阈值 = 容量 * 负载因子
threshold除了用于存储扩容阈值还有其他作用吗?
在新建HashMap对象时,threshold还会被用来存初始化时的容量。HashMap直到我们第一次插入节点时,才会对table进行初始化,避免不必要的空间浪费。
HashMap默认的初始容量是多少?HashMap的容量有什么限制吗?
默认容量是16。HashMap的容量必须是2的n此房,HashMap会根据我们传入的容量计算一个大于等于的最小的2的n次方,例如传9,容量为16
HashMap的初始化容量是如何计算的?
先上源码
static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
这段代码的 |= 等于 n = n | n>>>1
>>>为无符号右移,将a>>>b指的是a向右移动b指定的位数,右移后左边空出来的位用零来填充,移除右边的位被丢弃
假设 n 的值为 0010 0001,则该计算如下图:
我们可以通过这个公式,将最高位的1,之后全部设置为1。得到一个低位全是1的值,然后返回的值+1,会得到1个比n大的2次方的数
再回头看最开始cap-1,其实就是为了避免传递进来的数本来就是2的n次方的情况。
为什么HashMap的容量必须是2的N次方?
计算索引位置的公式为:(n-1)&hash,当n为2的N次方,n-1位低位全是1的值,此时任何值和n-1进行&运算的结果为该值的低N位,达到了和取模相同的效果,实现了均匀分布。
HashMap的默认初始化容量是16,为什么是16?
16主要是2的N次方,是一个比较合理的大小。但是在新建HashMap时,最好是根据自己使用情况设置初始值,这才是最合理的方案。
为什么负载因子是0.75?
这是在空间和时间上权衡的结果。如果值较高,是1,此时会减少空间开销,但是hash冲突的概率会增大,增加查找成本。如果是0.5,会减少hash冲突,但是有一半的空间被浪费,所以选择0.75。
HashMap插入的流程是怎样的?
先上源码
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //判断数组是否初始化 if ((tab = table) == null || (n = tab.length) == 0) //对数组进行初始化 n = (tab = resize()).length; //根据(n - 1) & hash计算出数组的key值,然后判断key值的节点是否有值 if ((p = tab[i = (n - 1) & hash]) == null) //没有值直接创建节点 tab[i] = newNode(hash, key, value, null); else {//进入else说明发生了hash冲突,key有值 Node<K,V> e; K k; // 如果在首结点与我们待插入的元素有相同的hash和key值,则先记录 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode)//判断节点是不是红黑树 //是红黑树直接插入值 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else {//说明还是链表 //遍历链表 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { //用尾插发在链表最后插入节点数据 p.next = newNode(hash, key, value, null); //判断链表数量是否达到阈值8 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st //链表数量达到阈值,准备去转换为红黑树或者扩容 treeifyBin(tab, hash); break; } //如果找到了于key相同的hash,则停止遍历 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } //e中记录了相同元素的节点 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; //判断当前存在数组中的节点+1后是否超过了阈值,超过了进行扩容 if (++size > threshold) //进行扩容 resize(); afterNodeInsertion(evict); return null; } //准备去转换为红黑树或者扩容的方法 final void treeifyBin(Node<K,V>[] tab, int hash) { int n, index; Node<K,V> e; //判断数组长度是否达到了阈值64 if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) //如果阈值没有达到了64,就会进行扩容,不会转换为红黑树 resize(); //转换为红黑树的过程 else if ((e = tab[index = (n - 1) & hash]) != null) { TreeNode<K,V> hd = null, tl = null; do { TreeNode<K,V> p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } }
大致的流程可以分为以下几步:
- 判断数组是否为空,为空进行初始化;
- 不为空,计算k的hash值,通过(n-1)&hash计算当前存放在数组中的下标idnex;
- 查看table[index]是否存在数据,没有数据就构造一个Node节点存放在table[index]中;
- 存在数据,说明发生了hash冲突(存在两个节点key的hash值一样),继续判断key是否相等,相等,用心得value替换元数据
- 如果不相等,判断当前节点是否是树类型,如果是树类型,创造树节点插入红黑树中;(如果当前节点是树节点说明当前已经是红黑树了)
- 如果不是树型节点,创建普通的Node加入链表中;判断链表长度是否大于8并且数组长度大于64,大于的话将链表转换为红黑树;否则只会进行扩容,不会转换为红黑树;
- 插入完成之后判断当前节点数是否大于阈值,如果大于开始扩容为原数组的2倍
除了HashMap,还用过哪些Map,如何选择?