Java基础-HashMap1.8前后

1、HashMap1.8之前

HashMap1.8之前的数据结构是采用 数组+链表组成。

我们的重点可以放到1.8以后对HashMap进行的一系列优化。

2、HashMap1.8之后

HashMap1.8之后的数据结构是采用 数组+链表+红黑树组成

1.8主要优化了哪些低地方?

  1. 数组+链表改成了数组+链表或红黑树;
  2. 链表的插入方式从头插法改为了尾插法,简单说就是插入时,如果数组位置上已经有元素,1.7将新元素放到数组中,原始节点作为新节点的后继节点,1.8遍历链表,将元素放置到链表的最后;
  3. 扩容的时候1.7需要对原数组中的元素进行重新hash定位在新数组的位置,1.8采用更简单的判断逻辑,位置不变或索引+旧容量大小;
  4. 在插入时,1.7先判断是否需要扩容,在插入;1.8先进行插入,插入完成再判断是否需要扩容;

为什么1.8后要升级HashMap的数据结构呢?

这主要是为了提升性能。因为在hash冲突严重的时(链表过长)的查找性能,使用链表的查找性能是O(n),而使用红黑树是O(logn)

什么时候使用链表?什么时候使用红黑树?

对于插入的时候,默认情况下是使用链表节点。

当同一个索引位置在新增后达到9个(阈值8):

如果此时链表长度大于64,就会触发链表节点转换为红黑树节点(treeifyBin);

如果数组长度小于64,则不会触发链表转换红黑树,而是会进行扩容,因为此时的数据量还比较小。

对于删除,当同一个索引位置的节点在移除后达到6个,并且该索引位置的节点为红黑树节点,会出发红黑树节点转链表节点

为什么链表转红黑树的阈值是8?

在进行方案设计时,需要考虑两个很重要的因素:时间和空间。阈值8是在时间和空间上权衡后的结,。红黑树节点占用空间大小为链表的节点的2倍,在节点太少时,红黑树的查找性能并不明显,付出2倍空间的代价作者觉得不值得。另外通过计算,链表中个数为8时的概率是十分低的。因此8是个合理的数字。

为什么转回链表用6而不是复用8?

如果设置8个转为红黑树,少于8个转为链表,当节点个数在8个徘徊时,就会频繁进行红黑树和链表的转换,造成性能的损耗。

HashMap有哪些主要的属性?分别用于做什么?

用于存储节点table数组。

size:HashMap已经存储的节点个数

threshold:扩容阈值,当HashMap的个数达到该值,会出发扩容机制

loadFactor:负载因子(默认是0.75),扩容阈值 = 容量 * 负载因子

threshold除了用于存储扩容阈值还有其他作用吗?

在新建HashMap对象时,threshold还会被用来存初始化时的容量。HashMap直到我们第一次插入节点时,才会对table进行初始化,避免不必要的空间浪费。

HashMap默认的初始容量是多少?HashMap的容量有什么限制吗?

默认容量是16。HashMap的容量必须是2的n此房,HashMap会根据我们传入的容量计算一个大于等于的最小的2的n次方,例如传9,容量为16

HashMap的初始化容量是如何计算的?

先上源码

static final int tableSizeFor(int cap) {
	int n = cap - 1;
	n |= n >>> 1;
	n |= n >>> 2;
	n |= n >>> 4;
	n |= n >>> 8;
	n |= n >>> 16;
	return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

这段代码的 |= 等于 n = n | n>>>1

>>>为无符号右移,将a>>>b指的是a向右移动b指定的位数,右移后左边空出来的位用零来填充,移除右边的位被丢弃

假设 n 的值为 0010 0001,则该计算如下图:

我们可以通过这个公式,将最高位的1,之后全部设置为1。得到一个低位全是1的值,然后返回的值+1,会得到1个比n大的2次方的数

再回头看最开始cap-1,其实就是为了避免传递进来的数本来就是2的n次方的情况。

为什么HashMap的容量必须是2的N次方?

计算索引位置的公式为:(n-1)&hash,当n为2的N次方,n-1位低位全是1的值,此时任何值和n-1进行&运算的结果为该值的低N位,达到了和取模相同的效果,实现了均匀分布。

HashMap的默认初始化容量是16,为什么是16?

16主要是2的N次方,是一个比较合理的大小。但是在新建HashMap时,最好是根据自己使用情况设置初始值,这才是最合理的方案。

为什么负载因子是0.75?

这是在空间和时间上权衡的结果。如果值较高,是1,此时会减少空间开销,但是hash冲突的概率会增大,增加查找成本。如果是0.5,会减少hash冲突,但是有一半的空间被浪费,所以选择0.75。

HashMap插入的流程是怎样的?

先上源码

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
			   boolean evict) {
	Node<K,V>[] tab; Node<K,V> p; int n, i;
	//判断数组是否初始化
	if ((tab = table) == null || (n = tab.length) == 0)
		//对数组进行初始化
		n = (tab = resize()).length;
	//根据(n - 1) & hash计算出数组的key值,然后判断key值的节点是否有值
	if ((p = tab[i = (n - 1) & hash]) == null)
		//没有值直接创建节点
		tab[i] = newNode(hash, key, value, null);
	else {//进入else说明发生了hash冲突,key有值
		Node<K,V> e; K k;
		// 如果在首结点与我们待插入的元素有相同的hash和key值,则先记录
		if (p.hash == hash &&
			((k = p.key) == key || (key != null && key.equals(k))))
			e = p;
		else if (p instanceof TreeNode)//判断节点是不是红黑树
			//是红黑树直接插入值
			e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
		else {//说明还是链表
			//遍历链表
			for (int binCount = 0; ; ++binCount) {
				if ((e = p.next) == null) {
					//用尾插发在链表最后插入节点数据
					p.next = newNode(hash, key, value, null);
					//判断链表数量是否达到阈值8
					if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
						//链表数量达到阈值,准备去转换为红黑树或者扩容
						treeifyBin(tab, hash);
					break;
				}
				//如果找到了于key相同的hash,则停止遍历
				if (e.hash == hash &&
					((k = e.key) == key || (key != null && key.equals(k))))
					break;
				p = e;
			}
		}
		//e中记录了相同元素的节点
		if (e != null) { // existing mapping for key
			V oldValue = e.value;
			if (!onlyIfAbsent || oldValue == null)
				e.value = value;
			afterNodeAccess(e);
			return oldValue;
		}
	}
	++modCount;
	//判断当前存在数组中的节点+1后是否超过了阈值,超过了进行扩容
	if (++size > threshold)
		//进行扩容
		resize();
	afterNodeInsertion(evict);
	return null;
}
//准备去转换为红黑树或者扩容的方法
final void treeifyBin(Node<K,V>[] tab, int hash) {
	int n, index; Node<K,V> e;
	//判断数组长度是否达到了阈值64
	if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
		//如果阈值没有达到了64,就会进行扩容,不会转换为红黑树
		resize();
	//转换为红黑树的过程
	else if ((e = tab[index = (n - 1) & hash]) != null) {
		TreeNode<K,V> hd = null, tl = null;
		do {
			TreeNode<K,V> p = replacementTreeNode(e, null);
			if (tl == null)
				hd = p;
			else {
				p.prev = tl;
				tl.next = p;
			}
			tl = p;
		} while ((e = e.next) != null);
		if ((tab[index] = hd) != null)
			hd.treeify(tab);
	}
}

大致的流程可以分为以下几步:

  1. 判断数组是否为空,为空进行初始化;
  2. 不为空,计算k的hash值,通过(n-1)&hash计算当前存放在数组中的下标idnex;
  3. 查看table[index]是否存在数据,没有数据就构造一个Node节点存放在table[index]中;
  4. 存在数据,说明发生了hash冲突(存在两个节点key的hash值一样),继续判断key是否相等,相等,用心得value替换元数据
  5. 如果不相等,判断当前节点是否是树类型,如果是树类型,创造树节点插入红黑树中;(如果当前节点是树节点说明当前已经是红黑树了)
  6. 如果不是树型节点,创建普通的Node加入链表中;判断链表长度是否大于8并且数组长度大于64,大于的话将链表转换为红黑树;否则只会进行扩容,不会转换为红黑树;
  7. 插入完成之后判断当前节点数是否大于阈值,如果大于开始扩容为原数组的2倍

除了HashMap,还用过哪些Map,如何选择?

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值