HashMap中储存数据的单位Node
HashMap是一种基于散列数组与链表实现的哈希表,在JDK1.8之后,变成了散列数组+链表+红黑树的结构来实现。
HashMap内部实际上是维护了一个Node数组
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
...
}
可以看到,Node结点里储存了key-value对,一个哈希值,一个next指针,也就是说,其基本实现是一个链表的结点。因为HashMap解决哈希冲突的方法是链地址法,所以在发生哈希冲突的时候,会在发生冲突的位置形成一条链表。我们都知道,链表不支持随机访问,只支持顺序访问。所以如果发生了哈希冲突,那么我们查询操作的时间复杂度就不再是O(1)了,而是还要加上遍历链表的时间。
当然,仅仅是链表结点显然不够,因为在JDK1.8之后还加入了红黑树,所以还需要有树结点才行:
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
....
}
可以看到,TreeNode结点继承了LinkedHashMap.Entry,而LinkedHashMap.Entry则是继承了上面所说的Node结点,所以,TreeNode实际上是Node结点的子类,并加上了parent,left,right,pre等树指针。
HashMap中的一些重要属性
DEFAULT_INITIAL_CAPACITY
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
HashMap中的默认初始容量,为16,这个值一定要是2的幂次数。也可以通过构造函数传入,但如果传入的值不是2的幂次数,HashMap会自动将其转化为大于它且最接近它的2幂次数。
MAXIMUM_CAPACITY
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
最大容量,为2的30次方,当容量超过该值时,就不会进行扩容了。基本不会达到这个值
DEFAULT_LOAD_FACTOR
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
负载因子,默认为0.75。用来控制HashMap进行扩容的阈值,也就是说当HashMap当前容量大于当前数组长度的0.75倍时,就要进行一次扩容。那为什么要设定为0.75呢?而不是像ArrayList那样满了再进行扩容呢?因为HashMap发生哈希冲突的时候,查询性能是会被影响的,所以HashMap要尽量避免哈希冲突。而负载因子设置得太低,会使扩容太频繁,若设置得太高,会导致哈希冲突严重。0.75应该是一个概率统计的结果,当数据数量达到数组的容量的0.75时,普遍来说,发生哈希冲突增加的开销会大于扩容带来的开销,此时进行扩容是比较合适的。所以设置为0.75
TREEIFY_THRESHOLD
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
链表转化为红黑树的阈值。若链表长度超过8,则满足了转化为红黑树的一个条件
MIN_TREEIFY_CAPACITY
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
链表转红黑树的最小容量。只有当链表长度达到了8,且数组容量达到了64,才会进行转化。只满足前者,只会进行一次扩容
UNTREEIFY_THRESHOLD
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
红黑树转化为链表的阈值,若删除元素,使红黑树结点小于6,则转化为链表
HashMap部分源码
从我们最熟悉的方法入手,HashMap的put()方法,相信大家都有使用过:
put()
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
可以看到,其内部实际上是调用了putVal()方法,并且里面调用有hash()方法,再来看看hash方法是什么妖魔鬼怪:
hash()
JDK1.7:
static int hash(int h) {
return h ^ (h >>> 7) ^ (h >>> 4);
}
JDK1.8:
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
相比之下,JDK1.7的实现实在是太鬼畜了。JDK1.8的实现就简单多了,其实就是取key的hashCode与自己的高16为进行亦或操作嘛~这样就获得了这个key的hash值
putVal()
/**
* Implements Map.put and related methods.
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//若数组还未被初始化,则进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//注意,这里取了(n - 1) & hash作为下标。若该下标下没有Node,则直接放进去就可以
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//若有Node,说明发生了哈希冲突
else {
Node<K,V> e; K k;
//若第一个结点的key就相等,说明直接覆盖就可以
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//否则,若该结点是一个红黑树结点,说明要对红黑树进行插入操作
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//若是链表结点,则需要对链表进行插入
else {
//binCount用来记录链表长度
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//为什么-1?因为是从next开始算起。若达到了转换阈值,则进行转换
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//在这个方法里面还会进行一次判断,若数据数量还未达到64,只会进行一次扩容,而不会转化
treeifyBin(tab, hash);
break;
}
//如果找到了,则break
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//说明找到了该key值,那么直接覆盖,同时返回旧值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//这是一个快失败版本号,其实就是CAS操作的版本号,虽然HashMap不支持并发,但也提供了一些相关方法
++modCount;
//若大于阈值,进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
这里还是比较好理解的。
主要讲一下取了(n - 1) & hash作为下标这个点。在看前面的内容可能会有疑问,为什么最大容量一定要是2的幂次数呢?其实和这里取下标是有关的。
首先看2的幂次数的二进制是怎么样的?
Num | Binary |
---|---|
2 | 10 |
4 | 100 |
8 | 1000 |
16 | 10000 |
这里是取n-1对hash进行运算的,那它们的n-1是什么形式?
Num-1 | Binary |
---|---|
1 | 1 |
3 | 11 |
7 | 111 |
15 | 1111 |
发现所有的低位都是1,那&运算的规则就是,只有当两个数字同时为1的时候才是1,否则为0,如
1011
1111 =
1011
只有2次幂数-1的二进制才是这种形式,那如果不是,那么n-1的二进制就会有0出现,也就是说在进行与操作时,该位的结果肯定是0,所以这就使得数组中至少有一个下标是永远不会被取到的,这就增加哈希冲突的概率
总结一下这里的几个点:
1.在JDK1.8中,是插入,再扩容。而在JDK1.7中是先扩容再插入。
2.在JDK1.8中,扩容触发条件多了一个,也就是当链表长度大于8,但数据总数量小于64时,也会触发一次扩容。为了解决哈希冲突
HashMap面试题
1.说一下HashMap的扩容机制?
HashMap是基于数组实现的,所以也需要扩容机制。
HashMap和扩容机制相关的几个属性有:
1.当前最大容量,必须是2的幂次数,默认初始值是16
2.负载因子,默认值为0.75
3.阈值,为当前最大容量*负载因子,默认为12
4(jdk1.8).转化为红黑树的阈值,默认为8
5.(jdk1.8).转化为红黑树的最小容量,默认为64.
触发扩容的条件有:
1.插入一个新值,且当前容量已经达到了阈值,此时要触发一次扩容。
2(jdk1.8).插入一个新值,链表长度超过了8,但当前容量还未达到64,也需要进行一次扩容。
扩容过程比较简单:建议一个大小为原来容量2倍的新数组,并将旧数组中的元素经过rehash计算之后插入到新的下标,在jdk1.7中,这是一个头插入的操作,所以在多线程环境下会产生死循环。在jdk1.8中,是一个尾插入的操作,解决了死循环的问题。
值得一提的是,在旧数组中的元素进行rehash计算插入到新下标的时候,新下标的可能值只有两种:和原来下标一样,原来下标+原来旧数组最大容量
2.HashMap的碰撞检测?解决的方法?
HashMap的碰撞检测实现很简单,就是通过哈希值计算出下标之后,判断下标处是否已经有Node结点,如果有就说明发生了哈希碰撞。
HashMap中解决哈希碰撞的方法是使用链地址法,也就是在同一个位置发生冲突的Node结点会形成一条链表,在检索的时候也需要遍历该链表。
3.了解HashMap存在的问题嘛?
存在死循环问题。HashMap进行扩容的时候,需要对旧数组中的元素进行rehash计算然后插入到新下标处,而且插入的方式是头插入,也就是说最后的顺序和原来的顺序是相反的。那么在多线程的环境下,这样的机制很可能会导致链表成环,然后在执行get()方法的时候,就会发生死循环。
另外还有一个在Tomcat中的问题。因为Tomcat会采用HashTable用来储存相关的HTTP请求对象。且解决哈希冲突的方法同样是链地址法,而链表只支持顺序访问,不支持随机访问。如果有黑客精心地设计一大堆hash值相同的请求,那么在Tomcat中会形成一个很长的链表或者是红黑树,会影响服务器性能。
4.HashMap在jdk1.7和1.8中的区别:
1.在jdk1.7中采用数组+链表的数据结构实现,而在jdk1.8中采用数组+链表+红黑树的数据结构实现,这样是为了降低哈希冲突严重的场景之下,查询操作的时间复杂度,从O(N)降低为O(logN)
2.在jdk1.7中,当哈希表为空时,会调用inflateTable()初始化一个数组,而在jdk1.8中会直接使用resize()方法对数组进行扩容。
3.在jdk1.7中,链地址法采用的是头插法,而在jdk1.8中采用尾插法。而头插法会导致在进行扩容的时候,原来的顺序和新插入的顺序相反,在多线程的场景下会出现链表成环,继而导致死循环的问题
4.计算hash值的算法也不同。在jdk1.7中,对key计算hash值是采用了三次位运算和两次亦或操作,比较复杂。而在jdk1.8中的实现就比较简单,直接取key的hashCode与自己的高16位进行亦或运算。
5.同样是插入操作,在jdk1.7中,如果有需要的话,会先进行扩容再进行插入,而在jdk1.8中,会先进行插入再进行扩容
6.扩容时机有所不同。在jdk1.7中,插入一个新值时,如果当前数据数量超过了阈值,就会触发一次扩容。而在jdk1.8中,除此之外,还有一个触发时间:当链表长度超过8,但当前数据数量还没超过64时,也会触发一次扩容
5.为什么数组最大容量要设为2的幂次数?
这是由HashMap中的一个算法来决定的。这个算法就是根据key的哈希值计算出在数组中的散列下标 。算法内容其实很简单,就是将key的哈希值与当前数组最大容量-1这个数作按位与操作。因为当前数组最大容量是2的幂次数,所以它-1得到的数字的二进制是一个高位全部为0,低位全部为1的一种格式。这样不仅能使计算出来的散列下标分布在数组范围内,同时能做到均匀分布。
如果不是2的幂次数,那么它-1的这个数的二进制中呢,低位会出现0,比如说1101这样的格式。与这种格式的数字进行按位与操作,0这一位的结果永远是0,不可能是1,这样会导致数组至少有一个下标是永远不会被计算到的,所以该下标会一直为空,增加哈希冲突的概率。
6.HashMap与HashTable的不同?
1.继承的父类不同。HashMap继承自AbstractMap类,而HashTable继承自Dictionary类。我看到有博客说Dictionary类已经基本被AbsrtractMap类取代了,HashTable继承Dictionary类是历史遗留问题。
2.HashMap支持key为空,也支持value为空。而HashTable不支持,出现这样的情况会报空指针异常。
3.HashMap不支持并发,而HashTable内部方法都是由synchronized修饰的,是支持并发的,但是效率比较低。所以一般这种场景都会使用ConcurrentHashMap而不是HashTable
4.对外提供的API有点区别。HashTable比HashMap多了contains()和elements()方法。elements()方法其实是Dictionary中的方法,它可以返回value的枚举。contains()方法其实就是HashMap中的containsValue()方法,其实containsValue()方法也只是调用了contains()方法而已。
5.初始化容量大小和扩容机制有所不同。HashMap的默认长度为16,而HashTable的默认长度为11.扩容的时候,HashMap会扩容到2倍原来大小,而HashTable会扩容到两倍原来大小再+1.
6.计算哈希值的方法不同。HashMap中计算key的哈希值,是拿key的hashCode和这个hashCode的高16位进行亦或操作,而HashTable直接使用key的hashCode作为哈希值。
7.LinkedHashMap和HashMap的区别?
LinkedHashMap和HashMap在操作上几乎没有任何区别。它们的区别主要在于有序性上。遍历LinkedHashMap得到的结果顺序与其数据的插入顺序或者访问顺序是相同的,具体是和插入顺序相同还是和访问顺序相同,可以通过参数来进行控制。而HashMap是无法保证有序性的。
LinkedHashMap能做到这一点是为什么呢?实际上LinkedHashMap是HashMap的子类,并且内部维护了一个双向链表,也就是说,LinkedHashMap的实现是基于一个HashMap和一个双向链表实现的,并且这个双向链表的Node结点其实是HashMap中Node结点的子类,然后加上了before和after双向指针,实现了双向链表的实现。其实在LinkedHashMap的源码中,它的很多方法都是直接调用了HashMap的方法,然后再自己多做一点维护双向链表的操作,在遍历的时候,直接遍历双向链表,继而实现有序性。
8.HashSet和HashMap有什么区别?
其实基本没有区别。
HashSet内部的方法几乎全部都是直接调用了HashMap的方法。
一定要说不同的话,HashMap是存储一个key-value数据,而HashSet调用HashMap的时候只关心key值的唯一性,以此来达到不可重复的特性