数据分析
wxsy024680
这个作者很懒,什么都没留下…
展开
-
数据分析——K聚类
import cv2import numpy as npimport matplotlib.pyplot as plt# 创建2个25*2数组X = np.random.randint(25,50,(25,2))Y = np.random.randint(60,85,(25,2))# 按行顺序堆叠数组Z = np.vstack((X,Y))# convert to np.float32Z = np.float32(Z)原创 2021-12-20 13:02:27 · 144 阅读 · 0 评论 -
数据分析——word文件
1、向word文件中写入文本并引入超链接import osimport win32com.clientwordapp = win32com.client.Dispatch("Word.Application")doc = wordapp.Documents.Add()addresses = ["E:\\python\\product32_ftp\\Q18-W2-3.tif", "E:\\python\\product32_ftp\\Q4-W4-3.tif"]fo原创 2021-08-24 18:13:27 · 1838 阅读 · 0 评论 -
数据分析——json文件
import jsonannotation = {"version": "4.5.7","flags": {},"shapes": [{ "label": "car", "points": [ [ 187.14285714285714, 403.14285714285717 ], [ 193.99999999999997, 407.42857142857144 ], [ 194.85714285714286, 414.0 ], [原创 2021-07-30 14:43:30 · 3809 阅读 · 0 评论 -
数据分析——mat文件
import scipy# 解决报警:AttributeError: module 'scipy' has no attribute 'io'from scipy import iofeatures_struct = scipy.io.loadmat('BoundingBox.mat')bb = features_struct['bb']print(bb)运行结果:[[ 1. 222. 249. 172. 200.][ 1. 203. 229. 240. 265.][ 1. 2原创 2021-07-28 15:44:22 · 4243 阅读 · 0 评论 -
数据分析——二进制文件
我们可以将列表、字典等数据保存为二进制文件,一方面便于后续使用,另一方面可以节省代码量。import picklecity = { '北京':'101010100', '上海':'101020100', '台北':'101340101'}# 写入二进制文件,用wbpickle_file = open('city.pkl','wb')pickle.dump(city,pickle_file)pickle_file.close()pickle_file = open('city.pkl原创 2021-07-14 12:55:42 · 5049 阅读 · 0 评论 -
数据分析——两种求解R平方的方法
1、皮尔逊相关系数 (Pearson Correlation Coefficient)是衡量两个值线性相关强度的量,取值范围:[-1, 1],正向相关:>0,负向相关:<0,无相关性:=0上式又可以表示为:R^2是皮尔逊相关系数的平方,依然是表示两个值线性相关强度的量,取值范围:[0, 1],值越大,相关性越强。import numpy as np def computeCorrelation(x, y): xBar = np.mean(x) yBar = np.mean(y)原创 2021-07-14 11:20:28 · 19503 阅读 · 2 评论 -
数据分析——scipy.signal.argrelextrema求数组中的极大值和极小值
1、求数组中的极大值和极小值from scipy import signalimport numpy as npimport matplotlib.pyplot as pltdata_x = np.arange(start = 0, stop = 40, step = 1, dtype='int')data_y = np.array([98,96,97,100,95,105,75,50,45,42, 51,85,90,92,91,89,101,62,65,52, 47,58,原创 2021-04-11 14:36:30 · 16638 阅读 · 0 评论 -
数据分析——文本文件
1、将文本文件转换为列表with open('C:/Users/wxscn/Desktop/predefined_classes.txt', 'r', encoding='utf-8') as f: classList = f.read().split('\n')print(classList)运行结果:[‘气孔’, ‘夹渣’, ‘焊瘤’, ‘裂纹’, ‘咬边’]...原创 2021-03-16 19:27:07 · 5156 阅读 · 0 评论 -
数据分析——迭代法求解方程
本例展示了如何利用迭代法求解方程,y值存储在excel中,求解的x值和loss值也存储在excel中,代码如下:import mathimport xlrdimport openpyxlimport warningswarnings.filterwarnings('ignore')# 表达式系数a=350b=370c=-3/7# 预测值与真实值差值阈值loss_thres = 1# 迭代次数阈值epoch_thres = 990results = []def fun(x,原创 2021-03-30 21:33:58 · 6343 阅读 · 1 评论 -
数据分析——梯度下降法解决线性回归问题
import tensorflow as tfimport numpy as np# 原始数据x_data=np.random.rand(100)y_data=x_data*2+1# 定义变量k=tf.Variable(0.0)b=tf.Variable(0.0)# 训练数据y=x_data*k+b# 定义损失函数loss=tf.reduce_mean(tf.square(y-y_data))# 定义优化器optimizer=tf.train.GradientDescen原创 2021-03-04 09:07:00 · 4844 阅读 · 1 评论 -
数据分析——梯度下降法解决非线性回归问题
import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt# 原始数据# x_data.shape=[200,1]x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis]noise=np.random.normal(0,0.02,x_data.shape)y_data=np.square(x_data)+noise# 定义两个placeholder,行数待定,列数为1原创 2021-03-05 15:12:27 · 5963 阅读 · 0 评论 -
数据分析——随机森林解决回归问题
下表为训练数据集,特征向量只有一维,根据此数据表建立回归决策树。在本数据集中,只有一个特征变量,最优切分变量自然是x。接下来考虑9个切分点{1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5},根据下式计算每个待切分点的损失函数值:当切分点s=1.5时,可得c1和c2值同理,其他切分点的c1和c2值如下当切分点s=1.5时,可得损失函数值同理,其他切分点的损失函数值如下由上可知,当切分点s=6.5时,损失函数值最小。因此,第一个划分点为(j=x,s=6.5),这原创 2021-04-29 11:17:33 · 7725 阅读 · 3 评论 -
数据分析——随机森林解决分类问题
根据轴承振动数据预测轴承故障,轴承振动数据一共有792组,每组数据包括6000个时间点的振幅。轴承标签数据一共有10类,0表示无故障,1~9分别表示不同的故障。百度网盘下载训练数据:链接:https://pan.baidu.com/s/1oKPwn_rAgA5pMk5geCdZKg提取码:bqjb二分类将标签1~9改为1,将多分类问题变为二分类问题import csvimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.原创 2021-04-30 19:36:57 · 8132 阅读 · 2 评论 -
数据分析——爬取股票数据
from urllib.parse import urlencodeimport pandas as pdimport requestsimport timedef gen_secid(rawcode: str) -> str: ''' 生成东方财富专用的secid Parameters ---------- rawcode : 6 位股票代码 Return ------ str: 指定格式的字符串 ''' # 沪市指数 if rawcode[:3] == '0原创 2021-05-24 10:15:41 · 6361 阅读 · 2 评论 -
数据分析——Excel文件
1、创建并写入xls文件import xlwt import Workbookbook = Workbook(os.path.dirname(__file__) + '\\defects.xls')sheet = book.add_sheet('defects')for i in range(len(names_dict)): sheet.write(i,0,list(names_dict.keys())[i]) #将字典keys值写入第0列 sheet.write(i,1,list原创 2021-07-14 09:23:14 · 4983 阅读 · 0 评论 -
数据分析——sklearn.linear_model解决线性回归问题
from xlrd import open_workbookfrom sklearn import linear_modelbook = open_workbook('test.xlsx')sheet = book.sheet_by_name('Sheet1')nrows = sheet.nrowsncols = sheet.ncolsprint(nrows,ncols)xs = []ys = []for i in range(1,nrows): data = [] f.原创 2021-07-14 09:32:29 · 4981 阅读 · 0 评论