数据分析——scipy.signal.argrelextrema求数组中的极大值和极小值

本文介绍如何利用Python中的Scipy库函数argrelextrema来寻找一维数据序列中的局部最大值(峰值)和局部最小值(谷值)。通过设置参数order可以调整比较的范围,从而更准确地识别峰谷位置。文中提供了完整的代码示例,并展示了不同order值下峰谷识别的变化。
该文章已生成可运行项目,
from scipy import signal
import numpy as np
import matplotlib.pyplot as plt

data_x = np.arange(start = 0, stop = 40, step = 1, dtype='int')
data_y = np.array([98,96,97,100,95,105,75,50,45,42,
					51,85,90,92,91,89,101,62,65,52,
					47,58,55,75,89,92,94,91,89,79,
					85,65,42,55,48,50,85,88,95,100])

# Find peaks
# order:两侧使用多少点进行比较
peak_indexes = signal.argrelextrema(data_y, np.greater, order=1)
peak_indexes = peak_indexes[0]

# Find valleys
# order:两侧使用多少点进行比较
valley_indexes = signal.argrelextrema(data_y, np.less, order=1)
valley_indexes = valley_indexes[0]

(fig, ax) = plt.subplots()

# Plot all data
ax.plot(data_x, data_y)

# Plot peaks
peak_x = peak_indexes
peak_y = data_y[peak_indexes]
ax.scatter(peak_x, peak_y, marker='o', color='red', label="Peaks")

# Plot valleys
valley_x = valley_indexes
valley_y = data_y[valley_indexes]
ax.scatter(valley_x, valley_y, marker='o', color='green', label="Valleys")

# 添加标题
plt.title('Find peaks and valleys using argrelextrema()')
# 添加图例
plt.legend(loc='best')
# 保存图像
plt.savefig('peaks-valleys.png')
# 显示图像
plt.show()

设置order = 1,运行结果:
在这里插入图片描述
设置order = 3,运行结果:
在这里插入图片描述

本文章已经生成可运行项目
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值