深度学习最全优化方法总结学习

本文探讨了在不同场景下选择合适的优化算法策略。针对稀疏数据,建议使用学习率自适应的优化方法,如Adadelta、RMSprop或Adam,以实现更快速的收敛。在需要更快收敛速度和训练深度复杂网络时,推荐使用Nadam优化器。
摘要由CSDN通过智能技术生成

参考链接:https://zhuanlan.zhihu.com/p/22252270

经验之谈:

  • 对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值。
  • SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠。
  • 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
  • Adadelta,RMSprop, Adam是比较相近的算法,在相似的情况下表现差不多。
  • 在想使用带动量的RMSprop, 或者Adam的地方,大多可以使用Nadam取得更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值