个人的几点理解:
1. 判断一个问题是否可以使用动态规划解决,主要判断其问题是否可以找到一个解决的角度,是的策略无后效性和具有最优子结构性质。
2. 直接判断上述两种性质比较困难,只有多做题
3. 灵活处理状态方程和状态转移方程
理解了很多概念以后,HDU2084,一遍编译通过,一遍AC
主要使用的概念是 从a[i][j]开始的点的和最大,从最后一层往前搜索,到a[0][0]的时候保存的是从(0,0)开始和最大的值
#include<stdio.h>
#include<math.h>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[2020][2020];
int a[400][400];
int main()
{
int n;
int t;
cin>>t;
while(t--)
{
cin>>n;
memset(a,-1,sizeof(a));
for(int i = 0 ; i < n ; i++)
{
for(int j = 0 ; j <= i;j++)
{
cin>>a[i][j];
}
}
for(int j = 0 ; j < n ; j++)
dp[n][j]= 0;
for(int i = n-1 ; i >=0 ; i--)
{
for(int j = 0 ; j <= i;j++)
{
dp[i][j] = max(a[i][j]+dp[i+1][j],dp[i+1][j+1]+a[i][j]);
}
}
cout<<dp[0][0]<<endl;
}
return 0;
}