Maftools常用用法简介

Maftools是一个用于分析和可视化癌症基因组数据的强大工具。本文介绍了如何将Annovar注释文件转换为MAF格式,通过read.maf()读取数据,然后利用plotmafSummary()、oncoplot()、plotTiTv()、somaticInteractions()和plotSignatures()等函数进行突变汇总、瀑布图、Ti/Tv比、基因交互事件和突变特征分析。每个函数的参数及其作用也进行了详细说明,帮助用户更好地理解和应用Maftools。
摘要由CSDN通过智能技术生成

maftools操作简介

操作主要分为3步,首先需要将annovar的结果转换为maf格式,然后读入maf文件生成oncomatrix,最后根据需求生成对应的可视化图。

常用函数

annovarToMaf()

annovarToMafAnnovar注释的结果转换为maf格式,其他VCF结果也可以自行转换为maf格式。

annovarToMaf(annovar, Center = NULL, refBuild = "hg19", tsbCol = NULL, table = "refGene", ens2hugo = TRUE, basename = NULL, sep = "\t", MAFobj = FALSE, sampleAnno = NULL)   

annovar: 输入的Annovar注释文件,可为多文件
refBuild=“hg19”: NCBI_Build field in MAF file will be filled with this value. Default hg19
Center=NULL: Center field in MAF file will be filled with this value. Default NA
table=“refGene”: 参考的基因注释表,有"ensGene"和"refGene",默认"refGene"
basename=NULL:输出的MAF文件名前缀
sep="\t": 输入文件的分隔符,默认制表符
MAFobj=FALSE: 设定为TRUE时返回的结果是MAF对象
tsbCol=NULL: 列名包含Tumor_Sample_Barcode或输入文件中的示例名称

read.maf()

read.maf()读入制表符分隔的maf文件(可gz压缩),生成oncomatrix,用于后续可视化。

read.maf(maf, clinicalData = NULL, removeDuplicatedVariants = TRUE, useAll = TRUE, gisticAllLesionsFile = NULL, gisticAmpGenesFile = NULL, gisticDelGenesFile = NULL, gisticScoresFile = NULL, cnLevel = "all", cnTable = NULL, isTCGA = FALSE, vc_nonSyn = NULL, verbose = TRUE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值