个人关于背包问题的总结(二)

一.前言


背包问题是动态规划的一个巨大的分支,常见的背包问题都有相对的模版,个人认为如果只是会背板子是下下之策,从长远的角度来看是不可取的,因此我想在这里分享一些个人对于背包问题的理解(会有借鉴其他大牛地方,逃~)同时如果我有一些不正的确的地方也欢迎大家和我交流。希望能加深大家对背包问题的理解。

二、完全背包问题原理

1.引入

完全背包问题也是一类非常经典的背包模型,与01背包不同的是在完全背包中同一种物品可以选无穷个,这也就说明了完全背包的特征与01背包不同,完全背包要考虑的是选0个,1个,2个...k个。

2.模版题

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

1.完全背包问题的理解

值得注意一点是题目虽然说每种物品有无限件可以使用,但实际上对于任意一种物品,只取这一种物品我们最多也只能取V/v[i]件,我们可以先直接用01背包的思路来考虑解完全背包:状态还是在前i种物品背包容积为j所能得到的最大价值。对于每种物品我们可以考虑选不选k件(0<=k<=V/v[i]),然后求最大值要用到三重循环,伪代码如下:

 分析第i  (i<=N)个物品的取舍情况

                背包的容量为j   (j<=V)时对于第i种物品的取舍情况

                        对于k件第i种物品选或不选(0<=k<=j/v[i])

                             更新前i种物品背包容积为j所能得到的最大价值(此时j>=k*v[i],一定可以更新)

                      

代码部分:

                        for(int i=1;i<=n;i++)

                                for(int j=0;j<=m;j++)

                                        for(int k=0;k<=j/v[i];k++)

                                             f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i];

但是其所需的时间复杂度为O(V*N*K),如果数据比较强的话就超时辣!!!

2.完全背包问题的第一种优化(O(V*N*log2(V/v[i]))

这种优化思路是将完全背包问题通过二进制转换成01背包问题,根据上面的分析我们得知对于第i种物品我们最多取k(k=N/v[i])个,而对于任意一个正整数我们可以将其转换成二进制的表达形式,进而将第i种物品拆成若干个体积为v[i]*2^n, w[i]*^2^n的物品(0<=n<=log2(N));举个栗子:假设第i种物品在不超过背包容积的情况下最多可以拿7件,而7=2^2+2^1+2^0。那么我们可以将其拆成三件体积费用分别为v[i]*2^2,w[i]*2^2,v[i]*2^1,w[i]*2^1,v[i]*2^0,w[i]*2^0的物品。

核心代码如下:

                int cnt=0;   //cnt是处理成01背包后物品的总件数

                for(int s=1;s<=k;s*=2)

               {        

                        cnt++;

                        k-=s;

                        v[cnt]=s*v[i];

                        w[cnt]=s*w[i];

                }

3.完全背包的第二种优化(O(V*N))

                第二种优化分为两步,第一步优化是减少时间复杂度,第二步是减少空间复杂度;

第一步优化

根据之前的理解f[i][j]=max(f[i][j],f[i-1][j-1*v[i]]+1*w[i],f[i-1][j-2*v[i]]+2*w[i]...f[i-1][j-k*v[i]]+k*w[i]);(1)

将(1)式j替换成j-v[i]可得 f[i][j-v[i]]=max(f[i][j-v[i]],f[i-1][j-2*v[i]]+1*w[i]...f[i-1][j-k*v[i]]+(k-1)*w[i]);(2) 

此时结合(1)(2)我们可以发现f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);(3)

显然(3)式只与i,j两个变量有关故第一步优化后核心代码如下:

                          for(int i=1;i<=n;i++)

                                for(int j=0;j<=m;j++)

                                       if(j>=v[i])f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);(注意与01背包相区分)

第二步优化

  对于经过第一步优化得到的代码我们可以参照01背包代码的优化方式对其进行优化详情可以去看看 个人关于背包问题的总结(一)-CSDN博客 中有关代码优化的部分 ,这里直接给出优化后代码                                

                          for(int i=1;i<=n;i++)

                                for(int j=v[i];j<=m;j++)

                                      f[j]=max(f[j],f[j-v[i]]+w[i]);

4.完全背包问题朴素版本的两个优化技巧(拓展)

(来源:《背包九讲》)

完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足v[i]<=v[j]且w[i]=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于 随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。这个优化可以简单的O(N^2)地实现,一般都可以承受。

另外,针对背包问题而言,比较不错的一种方法是:首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。

三、小结

单纯考察完全背包的问题和01背包一样比较简单,套模版即可。多和其他算法知识结合考察。只要注意一点就能发现。

                         

  • 26
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值