题意:
一个整型数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和,求所有子数组的和的最大值,要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,那么最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。
思考: 该题值得注意的有两点,其一,时间复杂度要求是O(n),否则直接暴力穷举就可以了;其二,虽然题目说数组里有正数也有负数,但是我们还是要注意数组全部为负数的情况。
代码:
#include <iostream>
#include <string>
using namespace std;
int MaxSum(int* a,int n)
{
int i=0;
int ans = a[0];
int sum = a[0];
for(i=1;i<n;i++)
{
if(sum + a[i] < 0)
{
sum = a[i]; //将该数作为下一段的起点
}
else
sum = sum+a[i] > a[i] ? sum+a[i] : a[i]; //sum如果小于0的话,直接剪掉,以a[i]为一个段的起点
ans = ans > sum ? ans : sum;
}
return ans;
}
int main()
{
int a[8] = {1,-2,3,10,-4,7,2,-5};
cout << MaxSum(a,8) << endl;
return 0;
}