求连续子数组的最大和

题意:

一个整型数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和,求所有子数组的和的最大值,要求时间复杂度为O(n)。

 

例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,那么最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。

思考: 该题值得注意的有两点,其一,时间复杂度要求是O(n),否则直接暴力穷举就可以了;其二,虽然题目说数组里有正数也有负数,但是我们还是要注意数组全部为负数的情况。

代码:

#include <iostream>
#include <string>
using namespace std;

int MaxSum(int* a,int n)
{
  int i=0;
  int ans = a[0];
  int sum = a[0];
  for(i=1;i<n;i++)
  {
     if(sum + a[i] < 0)
     {
         sum = a[i];   //将该数作为下一段的起点
     }
     else
        sum = sum+a[i] > a[i] ? sum+a[i] : a[i]; //sum如果小于0的话,直接剪掉,以a[i]为一个段的起点
     ans = ans > sum ? ans : sum;
  }
  return ans;
}

int main()
{
 
    int a[8] = {1,-2,3,10,-4,7,2,-5};
    cout << MaxSum(a,8) << endl;
    return 0;
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值