机器学习基础--碎片知识点(5)

决策边界 (decision boundary)

  在二元分类或多类别分类问题中,模型学到的类别之间的分界线。两种类别之间明确定义的边界。
  例如,在以下表示某个二元分类问题的图片中,决策边界是橙色类别和蓝色类别之间的分界线:
这里写图片描述


压缩感知CS与DL

  压缩感知完全基于模型(model-based),有很好的结构,经过严谨的数学建模。深度学习则完全反过来,模型非常灵活,需要通过数据进行监督学习,是一种基于实证的方法。
  压缩感知(compressive sensing),高维空间的低维模型,利用其稀疏低秩的性质,带来一场图像处理的革命。
深度学习。今天我以视觉为例,探讨低维模型和深度模型如何为了一个共同的目的从两个完全对立的方向走到了一起。
  自编码器(autoencoder)就是从压缩感知来的概念!!
  在高维的世界里,数据携带的信息是我们难以想象的鲁棒的。有多鲁棒呢?随着图像的分辨率越来越高,你可以损毁的像素的比例可以无限接近百分之百。这是数学的神奇之处:我们本来只想要损毁一小部分像素,但得到了远远超出想象的结论。 高维空间的统计和几何现象和低维空间中发展的几何和统计的直觉是完全相反的。你认为在低维空间一定会发生的事情在高维空间基本不发生,你认为在低维空间中绝对不会发生的事情往往在高维空间中以概率为 1 发生,即使世界一流的数学家在此也会犯错,这是我们学到的极其宝贵的经验。


基于编码的算法

  编码将图像转换成数字信息,可以减少空间复杂度。


白盒特征(White-Box Features)

  白盒特征图片提取器曾在计算机视觉上被广泛应用。特征先被提取,然后它们被连接起来为每一张图片构造一种多特征的表述。
  例如:在商品找同款的任务中,提取了以下特征:
  1)方向梯度直方图(Histogram of Oriented Gradients),计算图像的每一细分区块内各梯度方向的发生次数。
  2)色彩直方图(Color Histograms),将图像中所有颜色划分为25个颜色区间并制作直方图以查看其分布。
  3)色彩一致性(Color Coherence),衡量每一像素的色彩与其所属大区块颜色的相似度。颜色是衣物非常重要的一个属性,因此本特征提取器是用于补充色彩直方图信息的。
  4)哈里斯边角侦测(Harris Corner Detection),提取图像中代表边角的特征点。


多臂老虎机问题(Multi-armed bandit problem)

  我们会遇到很多选择的场景,如:上哪所大学,学什么专业,去哪家公司,等等。这些选择问题都会让选择困难症患者头大。那么,有什么科学的办法来解决这些问题呢?答案是:有!而且是非常科学的办法,那就是多臂老虎机(bandit)算法。
  bandit算法最早来源于劳苦大众喜闻乐见的娱乐活动:赌博学,它要解决的问题是这样的:
  一个赌徒要去摇老虎机,走进赌场一看,妈呀,一排老虎机,外表一毛一样,没啥区别。但是每个老虎机吐钱的概率是不一样的,然而赌场主是不会让你知道每个老虎机吐钱的概率分布是什么?(虽然每个拉杆背后具体的收益金额未知,但可以肯定是个确定值,即一般是服从某种概率分布)此时,对于一个小白赌徒,如何才能最大化自身的利益?这就是大名鼎鼎的多臂老虎机问题(Multi-armed bandit problem, K-armed bandit problem, MAB)

  在多臂老虎机问题中,每一次选择k臂中的一臂(行为)会得到一个期望报酬,我们称之为这个行为的价值。
  现行算法分很多类,比如UCB,Greedy,再比如Thompson Sampling。当然,这些算法也不同程度地对赌博机给出奖励的机制做了假设,比如这些奖励的给出是服从伯努利分布,或者其他。
  多臂赌博机算作online learning的一种,但是跟reinforcement learning并不一样。最大的区别在于,强化学习有planning的过程,而多臂赌博机并没有。


海量样本过滤

  多重过滤的技术方案,其具体流程可分为如下几个步骤:
  1)图像去重:去除重复图像及极相似图像;
  2)常见噪声图像过滤:过滤掉人脸、包装、发票等无关的常见类型噪声图像;
  3)基于聚类的样本挑选(粗过滤):在深度特征空间上进行聚类,选取合适的聚类作为目标样本,并将其他聚类作为噪声图像去除;
  4)基于分类的样本筛选(精细过滤):利用分类器返回的置信度来评估样本与相应类别的相关度,进一步筛选样本。


放弃 RNN 和 LSTM 吧,它们真的不好用,改用attention!

  2015-2016 年,新的 ResNet 和 Attention 技术出现。实际上,我们可以将 LSTM 理解为一种巧妙地 bypass technique,而 attention 的成功表明了 MLP(多层感知器)网络可以被上下文向量影响的平均网络(averaging network)所替代。两年过去了,我们现在已经可以给出结论:
  放弃 RNN 和 LSTM 吧,它们真的不好用,改用attention!

使用attention

  基于 attention 的网络逐渐被越来越多的企业采用,比如 Google,Facebook,Salesforce 等公司都已经开始用基于attention的模型来替换RNN和其变种。RNN 在各种应用场景下时日无多,因为相比基于 attention 的模型,RNN 需要更多的资源来训练和运行。

为什么不用RNN和LSTM

  训练 RNN 和 LSTM 是非常困难的,因为计算能力受到内存和带宽等的约束。这同时也是硬件设计者的噩梦,并最终限制了神经网络解决方案的适用性。简而言之,每个 LSTM 单元需要 4 个线性层(MLP 层),以便每个顺序时间步运行一次。线性层需要大量的内存带宽才能执行计算;由于系统没有足够的内存带宽将数据馈送到计算单元,实际上它们无法使用许多计算单元。添加更多的计算单元很容易,但添加更多的内存带宽却很难。因此,RNN/LSTM 及其变种并不和硬件加速非常匹配,一个可能的解决方案就是让计算在存储器设备中完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值