对数似然函数值/最大近然估计/log likelihood

对数似然函数值/最大近然估计/log likelihood

  在参数估计中有一类方法叫做“最大似然估计”,因为涉及到的估计函数往往是是指数型族,取对数后不影响它的单调性但会让计算过程变得简单,所以就采用了似然函数的对数,称“对数似然函数”。
  根据涉及的模型不同,对数函数会不尽相同,但是原理是一样的,都是从因变量的密度函数的到来,并涉及到对随机干扰项分布的假设。

最大似然估计法的基本思想

  极大似然原理的直观想法是:一个随机试验如有若干个可能的结果A,B,C,…。若在一次试验中,结果A出现,则一般认为试验条件对A出现有利,也即A出现的概率很大。

  最大似然估计法的思想很简单:在已经得到试验结果的情况下,我们应该寻找使这个结果出现的可能性最大的那个X作为真X的估计。求X的极大似然估计就归结为求L(X)的最大值点,而由于对数函数是单调增函数,所以对L(X)取log。
  对log(L(X))关于X求导数,并命其等于零,得到的方程组称为似然方程组。解方程组log(L(X)),又能验证它是一个极大值点,则它必是L(X)的最大值点,即为所求的最大似然估计。

理解对数似然估计函数值

  对数似然估计函数值一般取负值,实际值(不是绝对值)越大越好。
  1)第一,基本推理。对于似然函数,如果是离散分布,最后得到的数值直接就是概率,取值区间为0-1,对数化之后的值就是负数了;如果是连续变量,因为概率密度函数的取值区间并不局限于0-1,所以最后得到的似然函数值不是概率而只是概率密度函数值,这样对数化之后的正负就不确定了。
  2)第二,Eviews的计算公式解释。公式值的大小关键取之于残差平方和(以及样本容量),只有当残差平方和与样本容量的比之很小时,括号内的值才可能为负,从而公式值为正,这时说明参数拟合效度很高;反之公式值为负,但其绝对值越小表示残差平方和越小,因而参数拟合效度越高。

是不是解释变量减少了,log likelihood必然会变小?

  解释变量越多,因变量中被解释的部分就越多,对应的似然函数就越大,反之,解释变量少了,似然函数就会变小。你从对数似然函数的公式中也可以看出来,当变量更多的时候,比如从2个增加到3个,似然函数就可以在更大的空间范围内搜索最大值,所以3个解释变量得到的最大值肯定不会小于2个解释变量的情况。

解释变量个数不同,是不是log likelihood就没有可比性了?

  可以比较,似然函数本身的含义就是“当参数取某个值时,得到观测结果的可能性”。

根据目前这种后面的log likelihood变小的情况,能说log likelihood变量减少之后的模型要优于之前的模型么?

  不能,你看对数似然函数来决定是否需要采纳某个变量这是不符合逻辑的。选择某个变量进入方程原则上是应该看经济理论,比如在生产函数中,Y=f(L,K),L为劳动力,K为资本存量,为什么这个方程要有L和K,因为宏观经济学理论是这样的。又比如,还可以把人力资源成本加入到生产函数中,也是因为有相关的理论支持。当经济理论支持某个方程时候,多重共线性其实不算很大的问题。所以,你的出发点应该回到经济理论,而不是简单的看计量技术角度。

我的最终目的是想佐证:逐步回归之后精简了解释变量的模型要优于原来的模型(先不考虑经济理论)。目前看来log likelihood变小不能给我提供任何佐证了。那么,有没有别的指标可以表明新模型比旧模型要好?

  看F统计量和R^2值。

### LR检验、LM检验和Wald检验的区别 #### 比检验 (Likelihood Ratio Test, LR) LR检验基于两个模型的最大函数值之比来构建统计量。具体来说,该检验比较无约束条件下最大化的对数值与受约束条件下最大化后的对数值之间的差异。如果这个差异显著,则说明施加的约束不合理[^1]。 对于样本大小的要求上,LR检验更适合于大样本情况,并且当模型不完全依赖严格的分布假设时表现良好[^2]。 ```python import statsmodels.api as sm log_likelihood_restricted = ... # 受限模型的对数log_likelihood_unrestricted = ... # 非受限模型的对数值 lr_statistic = -2 * (log_likelihood_restricted - log_likelihood_unrestricted) p_value = 1 - sm.distributions.chi2.cdf(lr_statistic, df=degrees_of_freedom) ``` #### 拉格朗日乘数检验 (Lagrange Multiplier Test, LM) LM检验通过评估在原假设成立的情况下增加额外参数所带来的边际改进来进行测试。此方法不需要重新估计整个扩展版本的模型,只需要考虑局部变化即可得出结论。因此,在处理小型数据集或是结构相对简单的模型时更为有效。 此外,LM检验不仅能够用于验证线性的关系,同样可以应用于非线性情形下的假设检验。 ```python from statsmodels.stats.diagnostic import acorr_breusch_godfrey lm_test_result = acorr_breusch_godfrey(results, nlags=number_of_lags) print(f'LM Statistic: {lm_test_result.lm}') print(f'P-value: {lm_test_result.pvalue}') ``` #### Wald检验 Wald检验直接考察已知参数估计的标准误以及这些估计偏离零的程度。它衡量的是单个或多个系数是否等于特定数值(通常是0)。这种类型的检验特别适合用来判断某个变量是否有意义地影响因变量,尤其是在拥有较大规模的数据集并且可以获得较为精准的参数估计的情形下使用效果最佳。 同LM检验一样,Wald检验也能应对非线性和线性两种形式的约束条件。 ```python wald_test_results = results.wald_test(restriction_matrix, cov_p=covariance_matrix) print(wald_test_results) ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值